![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anandir | GIF version |
Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
anandir | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 396 | . . 3 ⊢ ((𝜒 ∧ 𝜒) ↔ 𝜒) | |
2 | 1 | anbi2i 457 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | an4 586 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) | |
4 | 2, 3 | bitr3i 186 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anandi3r 992 fununi 5286 imadiflem 5297 imadif 5298 imainlem 5299 elfzuzb 10022 |
Copyright terms: Public domain | W3C validator |