Theorem List for Intuitionistic Logic Explorer - 901-1000 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | pm4.66dc 901 |
Theorem *4.66 of [WhiteheadRussell] p.
120, given a decidability
condition. (Contributed by Jim Kingdon, 2-May-2018.)
|
⊢ (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
|
Theorem | pm4.54dc 902 |
Theorem *4.54 of [WhiteheadRussell] p.
120, for decidable propositions.
One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
|
Theorem | pm4.79dc 903 |
Equivalence between a disjunction of two implications, and a conjunction
and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121
but with additional decidability antecedents. (Contributed by Jim
Kingdon, 28-Mar-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)))) |
|
Theorem | pm5.17dc 904 |
Two ways of stating exclusive-or which are equivalent for a decidable
proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124.
(Contributed by Jim Kingdon, 16-Apr-2018.)
|
⊢ (DECID 𝜓 → (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ↔ ¬ 𝜓))) |
|
Theorem | pm2.85dc 905 |
Reverse distribution of disjunction over implication, given decidability.
Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed
by Jim
Kingdon, 1-Apr-2018.)
|
⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 → 𝜒)))) |
|
Theorem | orimdidc 906 |
Disjunction distributes over implication. The forward direction,
pm2.76 808, is valid intuitionistically. The reverse
direction holds if
𝜑 is decidable, as can be seen at pm2.85dc 905. (Contributed by Jim
Kingdon, 1-Apr-2018.)
|
⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)))) |
|
Theorem | pm2.26dc 907 |
Decidable proposition version of theorem *2.26 of [WhiteheadRussell]
p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
|
⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) |
|
Theorem | pm4.81dc 908 |
Theorem *4.81 of [WhiteheadRussell] p.
122, for decidable propositions.
This one needs a decidability condition, but compare with pm4.8 707
which
holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
|
⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜑) ↔ 𝜑)) |
|
Theorem | pm5.11dc 909 |
A decidable proposition or its negation implies a second proposition.
Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed
by Jim
Kingdon, 29-Mar-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (¬ 𝜑 → 𝜓)))) |
|
Theorem | pm5.12dc 910 |
Excluded middle with antecedents for a decidable consequent. Based on
theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed
by Jim Kingdon,
30-Mar-2018.)
|
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜑 → ¬ 𝜓))) |
|
Theorem | pm5.14dc 911 |
A decidable proposition is implied by or implies other propositions.
Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed
by Jim
Kingdon, 30-Mar-2018.)
|
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜒))) |
|
Theorem | pm5.13dc 912 |
An implication holds in at least one direction, where one proposition is
decidable. Based on theorem *5.13 of [WhiteheadRussell] p. 123.
(Contributed by Jim Kingdon, 30-Mar-2018.)
|
⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜑))) |
|
Theorem | pm5.55dc 913 |
A disjunction is equivalent to one of its disjuncts, given a decidable
disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125.
(Contributed by Jim Kingdon, 30-Mar-2018.)
|
⊢ (DECID 𝜑 → (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓))) |
|
Theorem | peircedc 914 |
Peirce's theorem for a decidable proposition. This odd-looking theorem
can be seen as an alternative to exmiddc 836, condc 853, or notnotrdc 843 in
the sense of expressing the "difference" between an
intuitionistic system
of propositional calculus and a classical system. In intuitionistic
logic, it only holds for decidable propositions. (Contributed by Jim
Kingdon, 3-Jul-2018.)
|
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
|
Theorem | looinvdc 915 |
The Inversion Axiom of the infinite-valued sentential logic (L-infinity)
of Lukasiewicz, but where one of the propositions is decidable. Using
dfor2dc 895, we can see that this expresses
"disjunction commutes."
Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the
decidability
condition). (Contributed by NM, 12-Aug-2004.)
|
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑))) |
|
1.2.10 Miscellaneous theorems of propositional
calculus
|
|
Theorem | pm5.21nd 916 |
Eliminate an antecedent implied by each side of a biconditional.
(Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen,
4-Nov-2013.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜃)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜃)
& ⊢ (𝜃 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
|
Theorem | pm5.35 917 |
Theorem *5.35 of [WhiteheadRussell] p.
125. (Contributed by NM,
3-Jan-2005.)
|
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) |
|
Theorem | pm5.54dc 918 |
A conjunction is equivalent to one of its conjuncts, given a decidable
conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125.
(Contributed by Jim Kingdon, 30-Mar-2018.)
|
⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) |
|
Theorem | baib 919 |
Move conjunction outside of biconditional. (Contributed by NM,
13-May-1999.)
|
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
|
Theorem | baibr 920 |
Move conjunction outside of biconditional. (Contributed by NM,
11-Jul-1994.)
|
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
|
Theorem | rbaib 921 |
Move conjunction outside of biconditional. (Contributed by Mario
Carneiro, 11-Sep-2015.)
|
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
|
Theorem | rbaibr 922 |
Move conjunction outside of biconditional. (Contributed by Mario
Carneiro, 11-Sep-2015.)
|
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
|
Theorem | baibd 923 |
Move conjunction outside of biconditional. (Contributed by Mario
Carneiro, 11-Sep-2015.)
|
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
|
Theorem | rbaibd 924 |
Move conjunction outside of biconditional. (Contributed by Mario
Carneiro, 11-Sep-2015.)
|
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
|
Theorem | pm5.44 925 |
Theorem *5.44 of [WhiteheadRussell] p.
125. (Contributed by NM,
3-Jan-2005.)
|
⊢ ((𝜑 → 𝜓) → ((𝜑 → 𝜒) ↔ (𝜑 → (𝜓 ∧ 𝜒)))) |
|
Theorem | pm5.6dc 926 |
Conjunction in antecedent versus disjunction in consequent, for a
decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with
decidability condition added. The reverse implication holds for all
propositions (see pm5.6r 927). (Contributed by Jim Kingdon,
2-Apr-2018.)
|
⊢ (DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) |
|
Theorem | pm5.6r 927 |
Conjunction in antecedent versus disjunction in consequent. One direction
of Theorem *5.6 of [WhiteheadRussell] p. 125. If 𝜓 is
decidable, the
converse also holds (see pm5.6dc 926). (Contributed by Jim Kingdon,
4-Aug-2018.)
|
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒)) |
|
Theorem | orcanai 928 |
Change disjunction in consequent to conjunction in antecedent.
(Contributed by NM, 8-Jun-1994.)
|
⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
|
Theorem | intnan 929 |
Introduction of conjunct inside of a contradiction. (Contributed by NM,
16-Sep-1993.)
|
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜓 ∧ 𝜑) |
|
Theorem | intnanr 930 |
Introduction of conjunct inside of a contradiction. (Contributed by NM,
3-Apr-1995.)
|
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) |
|
Theorem | intnand 931 |
Introduction of conjunct inside of a contradiction. (Contributed by NM,
10-Jul-2005.)
|
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
|
Theorem | intnanrd 932 |
Introduction of conjunct inside of a contradiction. (Contributed by NM,
10-Jul-2005.)
|
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
|
Theorem | dcan 933 |
A conjunction of two decidable propositions is decidable. (Contributed by
Jim Kingdon, 12-Apr-2018.)
|
⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ 𝜓)) |
|
Theorem | dcan2 934 |
A conjunction of two decidable propositions is decidable, expressed in a
curried form as compared to dcan 933. (Contributed by Jim Kingdon,
12-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∧ 𝜓))) |
|
Theorem | dcor 935 |
A disjunction of two decidable propositions is decidable. (Contributed by
Jim Kingdon, 21-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
|
Theorem | dcbi 936 |
An equivalence of two decidable propositions is decidable. (Contributed
by Jim Kingdon, 12-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ↔ 𝜓))) |
|
Theorem | annimdc 937 |
Express conjunction in terms of implication. The forward direction,
annimim 686, is valid for all propositions, but as an
equivalence, it
requires a decidability condition. (Contributed by Jim Kingdon,
25-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)))) |
|
Theorem | pm4.55dc 938 |
Theorem *4.55 of [WhiteheadRussell] p.
120, for decidable propositions.
(Contributed by Jim Kingdon, 2-May-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) |
|
Theorem | orandc 939 |
Disjunction in terms of conjunction (De Morgan's law), for decidable
propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120.
(Contributed by Jim Kingdon, 13-Dec-2021.)
|
⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))) |
|
Theorem | mpbiran 940 |
Detach truth from conjunction in biconditional. (Contributed by NM,
27-Feb-1996.) (Revised by NM, 9-Jan-2015.)
|
⊢ 𝜓
& ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 ↔ 𝜒) |
|
Theorem | mpbiran2 941 |
Detach truth from conjunction in biconditional. (Contributed by NM,
22-Feb-1996.) (Revised by NM, 9-Jan-2015.)
|
⊢ 𝜒
& ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 ↔ 𝜓) |
|
Theorem | mpbir2an 942 |
Detach a conjunction of truths in a biconditional. (Contributed by NM,
10-May-2005.) (Revised by NM, 9-Jan-2015.)
|
⊢ 𝜓
& ⊢ 𝜒
& ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ 𝜑 |
|
Theorem | mpbi2and 943 |
Detach a conjunction of truths in a biconditional. (Contributed by NM,
6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) |
|
Theorem | mpbir2and 944 |
Detach a conjunction of truths in a biconditional. (Contributed by NM,
6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | pm5.62dc 945 |
Theorem *5.62 of [WhiteheadRussell] p.
125, for a decidable proposition.
(Contributed by Jim Kingdon, 12-May-2018.)
|
⊢ (DECID 𝜓 → (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
|
Theorem | pm5.63dc 946 |
Theorem *5.63 of [WhiteheadRussell] p.
125, for a decidable proposition.
(Contributed by Jim Kingdon, 12-May-2018.)
|
⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) |
|
Theorem | bianfi 947 |
A wff conjoined with falsehood is false. (Contributed by NM,
5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
|
⊢ ¬ 𝜑 ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
|
Theorem | bianfd 948 |
A wff conjoined with falsehood is false. (Contributed by NM,
27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
|
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
|
Theorem | pm4.43 949 |
Theorem *4.43 of [WhiteheadRussell] p.
119. (Contributed by NM,
3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
|
⊢ (𝜑 ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ ¬ 𝜓))) |
|
Theorem | pm4.82 950 |
Theorem *4.82 of [WhiteheadRussell] p.
122. (Contributed by NM,
3-Jan-2005.)
|
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑) |
|
Theorem | pm4.83dc 951 |
Theorem *4.83 of [WhiteheadRussell] p.
122, for decidable propositions.
As with other case elimination theorems, like pm2.61dc 865, it only holds
for decidable propositions. (Contributed by Jim Kingdon, 12-May-2018.)
|
⊢ (DECID 𝜑 → (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓)) |
|
Theorem | biantr 952 |
A transitive law of equivalence. Compare Theorem *4.22 of
[WhiteheadRussell] p. 117.
(Contributed by NM, 18-Aug-1993.)
|
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) |
|
Theorem | orbididc 953 |
Disjunction distributes over the biconditional, for a decidable
proposition. Based on an axiom of system DS in Vladimir Lifschitz,
"On
calculational proofs" (1998),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384.
(Contributed by Jim Kingdon, 2-Apr-2018.)
|
⊢ (DECID 𝜑 → ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒)))) |
|
Theorem | pm5.7dc 954 |
Disjunction distributes over the biconditional, for a decidable
proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This
theorem is similar to orbididc 953. (Contributed by Jim Kingdon,
2-Apr-2018.)
|
⊢ (DECID 𝜒 → (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓)))) |
|
Theorem | bigolden 955 |
Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by
NM, 10-Jan-2005.)
|
⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
|
Theorem | anordc 956 |
Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of
[WhiteheadRussell] p. 120, but
where the propositions are decidable. The
forward direction, pm3.1 754, holds for all propositions, but the
equivalence only holds given decidability. (Contributed by Jim Kingdon,
21-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
|
Theorem | pm3.11dc 957 |
Theorem *3.11 of [WhiteheadRussell] p.
111, but for decidable
propositions. The converse, pm3.1 754, holds for all propositions, not
just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) |
|
Theorem | pm3.12dc 958 |
Theorem *3.12 of [WhiteheadRussell] p.
111, but for decidable
propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓)))) |
|
Theorem | pm3.13dc 959 |
Theorem *3.13 of [WhiteheadRussell] p.
111, but for decidable
propositions. The converse, pm3.14 753, holds for all propositions.
(Contributed by Jim Kingdon, 22-Apr-2018.)
|
⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)))) |
|
Theorem | dn1dc 960 |
DN1 for decidable propositions. Without the
decidability conditions,
DN1 can serve as a single axiom for
Boolean algebra. See
http://www-unix.mcs.anl.gov/~mccune/papers/basax/v12.pdf.
(Contributed by Jim Kingdon, 22-Apr-2018.)
|
⊢ ((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID
𝜒 ∧ DECID
𝜃))) → (¬ (¬
(¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒)) |
|
Theorem | pm5.71dc 961 |
Decidable proposition version of theorem *5.71 of [WhiteheadRussell]
p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for
decidability by Jim Kingdon, 19-Apr-2018.)
|
⊢ (DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)))) |
|
Theorem | pm5.75 962 |
Theorem *5.75 of [WhiteheadRussell] p.
126. (Contributed by NM,
3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof
shortened by Wolf Lammen, 23-Dec-2012.)
|
⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) |
|
Theorem | bimsc1 963 |
Removal of conjunct from one side of an equivalence. (Contributed by NM,
5-Aug-1993.)
|
⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
|
Theorem | ccase 964 |
Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
(Proof shortened by Wolf Lammen, 6-Jan-2013.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜏)
& ⊢ ((𝜒 ∧ 𝜓) → 𝜏)
& ⊢ ((𝜑 ∧ 𝜃) → 𝜏)
& ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
|
Theorem | ccased 965 |
Deduction for combining cases. (Contributed by NM, 9-May-2004.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜂)) & ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜂)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∧ (𝜒 ∨ 𝜏)) → 𝜂)) |
|
Theorem | ccase2 966 |
Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜏)
& ⊢ (𝜒 → 𝜏)
& ⊢ (𝜃 → 𝜏) ⇒ ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)) → 𝜏) |
|
Theorem | niabn 967 |
Miscellaneous inference relating falsehoods. (Contributed by NM,
31-Mar-1994.)
|
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 → ((𝜒 ∧ 𝜓) ↔ ¬ 𝜑)) |
|
Theorem | dedlem0a 968 |
Alternate version of dedlema 969. (Contributed by NM, 2-Apr-1994.) (Proof
shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen,
4-Dec-2012.)
|
⊢ (𝜑 → (𝜓 ↔ ((𝜒 → 𝜑) → (𝜓 ∧ 𝜑)))) |
|
Theorem | dedlema 969 |
Lemma for iftrue 3537. (Contributed by NM, 26-Jun-2002.) (Proof
shortened
by Andrew Salmon, 7-May-2011.)
|
⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
|
Theorem | dedlemb 970 |
Lemma for iffalse 3540. (Contributed by NM, 15-May-1999.) (Proof
shortened
by Andrew Salmon, 7-May-2011.)
|
⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
|
Theorem | pm4.42r 971 |
One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed
by Jim Kingdon, 4-Aug-2018.)
|
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑) |
|
Theorem | ninba 972 |
Miscellaneous inference relating falsehoods. (Contributed by NM,
31-Mar-1994.)
|
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 → (¬ 𝜑 ↔ (𝜒 ∧ 𝜓))) |
|
Theorem | prlem1 973 |
A specialized lemma for set theory (to derive the Axiom of Pairing).
(Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon,
13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
|
⊢ (𝜑 → (𝜂 ↔ 𝜒)) & ⊢ (𝜓 → ¬ 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) |
|
Theorem | prlem2 974 |
A specialized lemma for set theory (to derive the Axiom of Pairing).
(Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon,
13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)))) |
|
Theorem | oplem1 975 |
A specialized lemma for set theory (ordered pair theorem). (Contributed
by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.)
(Proof shortened by Mario Carneiro, 2-Feb-2015.)
|
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → (𝜃 ∨ 𝜏)) & ⊢ (𝜓 ↔ 𝜃)
& ⊢ (𝜒 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | rnlem 976 |
Lemma used in construction of real numbers. (Contributed by NM,
4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒)))) |
|
1.2.11 Abbreviated conjunction and disjunction of
three wff's
|
|
Syntax | w3o 977 |
Extend wff definition to include 3-way disjunction ('or').
|
wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
|
Syntax | w3a 978 |
Extend wff definition to include 3-way conjunction ('and').
|
wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
|
Definition | df-3or 979 |
Define disjunction ('or') of 3 wff's. Definition *2.33 of
[WhiteheadRussell] p. 105. This
abbreviation reduces the number of
parentheses and emphasizes that the order of bracketing is not important
by virtue of the associative law orass 767. (Contributed by NM,
8-Apr-1994.)
|
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
|
Definition | df-3an 980 |
Define conjunction ('and') of 3 wff.s. Definition *4.34 of
[WhiteheadRussell] p. 118. This
abbreviation reduces the number of
parentheses and emphasizes that the order of bracketing is not important
by virtue of the associative law anass 401. (Contributed by NM,
8-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
|
Theorem | 3orass 981 |
Associative law for triple disjunction. (Contributed by NM,
8-Apr-1994.)
|
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
|
Theorem | 3anass 982 |
Associative law for triple conjunction. (Contributed by NM,
8-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
|
Theorem | 3anrot 983 |
Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
|
Theorem | 3orrot 984 |
Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) |
|
Theorem | 3ancoma 985 |
Commutation law for triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
|
Theorem | 3ancomb 986 |
Commutation law for triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
|
Theorem | 3orcomb 987 |
Commutation law for triple disjunction. (Contributed by Scott Fenton,
20-Apr-2011.)
|
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) |
|
Theorem | 3anrev 988 |
Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
|
Theorem | 3anan32 989 |
Convert triple conjunction to conjunction, then commute. (Contributed by
Jonathan Ben-Naim, 3-Jun-2011.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
|
Theorem | 3anan12 990 |
Convert triple conjunction to conjunction, then commute. (Contributed by
Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon,
14-Jun-2011.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | anandi3 991 |
Distribution of triple conjunction over conjunction. (Contributed by
David A. Wheeler, 4-Nov-2018.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | anandi3r 992 |
Distribution of triple conjunction over conjunction. (Contributed by
David A. Wheeler, 4-Nov-2018.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓))) |
|
Theorem | 3ioran 993 |
Negated triple disjunction as triple conjunction. (Contributed by Scott
Fenton, 19-Apr-2011.)
|
⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
|
Theorem | 3simpa 994 |
Simplification of triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜓)) |
|
Theorem | 3simpb 995 |
Simplification of triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜑 ∧ 𝜒)) |
|
Theorem | 3simpc 996 |
Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
(Proof shortened by Andrew Salmon, 13-May-2011.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
|
Theorem | simp1 997 |
Simplification of triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) |
|
Theorem | simp2 998 |
Simplification of triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) |
|
Theorem | simp3 999 |
Simplification of triple conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) |
|
Theorem | simpl1 1000 |
Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
|
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |