HomeHome Intuitionistic Logic Explorer
Theorem List (p. 10 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 901-1000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremorimdidc 901 Disjunction distributes over implication. The forward direction, pm2.76 803, is valid intuitionistically. The reverse direction holds if 𝜑 is decidable, as can be seen at pm2.85dc 900. (Contributed by Jim Kingdon, 1-Apr-2018.)
(DECID 𝜑 → ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒))))
 
Theorempm2.26dc 902 Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
(DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑𝜓) → 𝜓)))
 
Theorempm4.81dc 903 Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 702 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
(DECID 𝜑 → ((¬ 𝜑𝜑) ↔ 𝜑))
 
Theorempm5.11dc 904 A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))
 
Theorempm5.12dc 905 Excluded middle with antecedents for a decidable consequent. Based on theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜑 → ¬ 𝜓)))
 
Theorempm5.14dc 906 A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜒)))
 
Theorempm5.13dc 907 An implication holds in at least one direction, where one proposition is decidable. Based on theorem *5.13 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜑)))
 
Theorempm5.55dc 908 A disjunction is equivalent to one of its disjuncts, given a decidable disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜑 → (((𝜑𝜓) ↔ 𝜑) ∨ ((𝜑𝜓) ↔ 𝜓)))
 
Theorempeircedc 909 Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 831, condc 848, or notnotrdc 838 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.)
(DECID 𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
 
Theoremlooinvdc 910 The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 890, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.)
(DECID 𝜑 → (((𝜑𝜓) → 𝜓) → ((𝜓𝜑) → 𝜑)))
 
1.2.10  Miscellaneous theorems of propositional calculus
 
Theorempm5.21nd 911 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
((𝜑𝜓) → 𝜃)    &   ((𝜑𝜒) → 𝜃)    &   (𝜃 → (𝜓𝜒))       (𝜑 → (𝜓𝜒))
 
Theorempm5.35 912 Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theorempm5.54dc 913 A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
(DECID 𝜑 → (((𝜑𝜓) ↔ 𝜑) ∨ ((𝜑𝜓) ↔ 𝜓)))
 
Theorembaib 914 Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜑𝜒))
 
Theorembaibr 915 Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))
 
Theoremrbaib 916 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜑𝜓))
 
Theoremrbaibr 917 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜓𝜑))
 
Theorembaibd 918 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜒) → (𝜓𝜃))
 
Theoremrbaibd 919 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜃) → (𝜓𝜒))
 
Theorempm5.44 920 Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜑 → (𝜓𝜒))))
 
Theorempm5.6dc 921 Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 922). (Contributed by Jim Kingdon, 2-Apr-2018.)
(DECID 𝜓 → (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))))
 
Theorempm5.6r 922 Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If 𝜓 is decidable, the converse also holds (see pm5.6dc 921). (Contributed by Jim Kingdon, 4-Aug-2018.)
((𝜑 → (𝜓𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
 
Theoremorcanai 923 Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑 ∧ ¬ 𝜓) → 𝜒)
 
Theoremintnan 924 Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
¬ 𝜑        ¬ (𝜓𝜑)
 
Theoremintnanr 925 Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
¬ 𝜑        ¬ (𝜑𝜓)
 
Theoremintnand 926 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ (𝜒𝜓))
 
Theoremintnanrd 927 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ (𝜓𝜒))
 
Theoremdcan 928 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
 
Theoremdcan2 929 A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 928. (Contributed by Jim Kingdon, 12-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremdcor 930 A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremdcbi 931 An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
 
Theoremannimdc 932 Express conjunction in terms of implication. The forward direction, annimim 681, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))))
 
Theorempm4.55dc 933 Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑𝜓) ↔ (𝜑 ∨ ¬ 𝜓))))
 
Theoremorandc 934 Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)))
 
Theoremmpbiran 935 Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.)
𝜓    &   (𝜑 ↔ (𝜓𝜒))       (𝜑𝜒)
 
Theoremmpbiran2 936 Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.)
𝜒    &   (𝜑 ↔ (𝜓𝜒))       (𝜑𝜓)
 
Theoremmpbir2an 937 Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.)
𝜓    &   𝜒    &   (𝜑 ↔ (𝜓𝜒))       𝜑
 
Theoremmpbi2and 938 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑 → ((𝜓𝜒) ↔ 𝜃))       (𝜑𝜃)
 
Theoremmpbir2and 939 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
(𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑 → (𝜓 ↔ (𝜒𝜃)))       (𝜑𝜓)
 
Theorempm5.62dc 940 Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
(DECID 𝜓 → (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
 
Theorempm5.63dc 941 Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
(DECID 𝜑 → ((𝜑𝜓) ↔ (𝜑 ∨ (¬ 𝜑𝜓))))
 
Theorembianfi 942 A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
¬ 𝜑       (𝜑 ↔ (𝜓𝜑))
 
Theorembianfd 943 A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
(𝜑 → ¬ 𝜓)       (𝜑 → (𝜓 ↔ (𝜓𝜒)))
 
Theorempm4.43 944 Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
(𝜑 ↔ ((𝜑𝜓) ∧ (𝜑 ∨ ¬ 𝜓)))
 
Theorempm4.82 945 Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ 𝜑)
 
Theorempm4.83dc 946 Theorem *4.83 of [WhiteheadRussell] p. 122, for decidable propositions. As with other case elimination theorems, like pm2.61dc 860, it only holds for decidable propositions. (Contributed by Jim Kingdon, 12-May-2018.)
(DECID 𝜑 → (((𝜑𝜓) ∧ (¬ 𝜑𝜓)) ↔ 𝜓))
 
Theorembiantr 947 A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
(((𝜑𝜓) ∧ (𝜒𝜓)) → (𝜑𝜒))
 
Theoremorbididc 948 Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.)
(DECID 𝜑 → ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒))))
 
Theorempm5.7dc 949 Disjunction distributes over the biconditional, for a decidable proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbididc 948. (Contributed by Jim Kingdon, 2-Apr-2018.)
(DECID 𝜒 → (((𝜑𝜒) ↔ (𝜓𝜒)) ↔ (𝜒 ∨ (𝜑𝜓))))
 
Theorembigolden 950 Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.)
(((𝜑𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑𝜓)))
 
Theoremanordc 951 Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 749, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))))
 
Theorempm3.11dc 952 Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 749, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))))
 
Theorempm3.12dc 953 Theorem *3.12 of [WhiteheadRussell] p. 111, but for decidable propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓))))
 
Theorempm3.13dc 954 Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 748, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
(DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))))
 
Theoremdn1dc 955 DN1 for decidable propositions. Without the decidability conditions, DN1 can serve as a single axiom for Boolean algebra. See http://www-unix.mcs.anl.gov/~mccune/papers/basax/v12.pdf. (Contributed by Jim Kingdon, 22-Apr-2018.)
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒DECID 𝜃))) → (¬ (¬ (¬ (𝜑𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒𝜃)))) ↔ 𝜒))
 
Theorempm5.71dc 956 Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.)
(DECID 𝜓 → ((𝜓 → ¬ 𝜒) → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒))))
 
Theorempm5.75 957 Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.)
(((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒))
 
Theorembimsc1 958 Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.)
(((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))
 
Theoremccase 959 Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
((𝜑𝜓) → 𝜏)    &   ((𝜒𝜓) → 𝜏)    &   ((𝜑𝜃) → 𝜏)    &   ((𝜒𝜃) → 𝜏)       (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
 
Theoremccased 960 Deduction for combining cases. (Contributed by NM, 9-May-2004.)
(𝜑 → ((𝜓𝜒) → 𝜂))    &   (𝜑 → ((𝜃𝜒) → 𝜂))    &   (𝜑 → ((𝜓𝜏) → 𝜂))    &   (𝜑 → ((𝜃𝜏) → 𝜂))       (𝜑 → (((𝜓𝜃) ∧ (𝜒𝜏)) → 𝜂))
 
Theoremccase2 961 Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
((𝜑𝜓) → 𝜏)    &   (𝜒𝜏)    &   (𝜃𝜏)       (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
 
Theoremniabn 962 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
𝜑       𝜓 → ((𝜒𝜓) ↔ ¬ 𝜑))
 
Theoremdedlem0a 963 Alternate version of dedlema 964. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
(𝜑 → (𝜓 ↔ ((𝜒𝜑) → (𝜓𝜑))))
 
Theoremdedlema 964 Lemma for iftrue 3531. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.)
(𝜑 → (𝜓 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
 
Theoremdedlemb 965 Lemma for iffalse 3534. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
𝜑 → (𝜒 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
 
Theorempm4.42r 966 One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.)
(((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓)) → 𝜑)
 
Theoremninba 967 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
𝜑       𝜓 → (¬ 𝜑 ↔ (𝜒𝜓)))
 
Theoremprlem1 968 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
(𝜑 → (𝜂𝜒))    &   (𝜓 → ¬ 𝜃)       (𝜑 → (𝜓 → (((𝜓𝜒) ∨ (𝜃𝜏)) → 𝜂)))
 
Theoremprlem2 969 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
(((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))
 
Theoremoplem1 970 A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))    &   (𝜓𝜃)    &   (𝜒 → (𝜃𝜏))       (𝜑𝜓)
 
Theoremrnlem 971 Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (((𝜑𝜒) ∧ (𝜓𝜃)) ∧ ((𝜑𝜃) ∧ (𝜓𝜒))))
 
1.2.11  Abbreviated conjunction and disjunction of three wff's
 
Syntaxw3o 972 Extend wff definition to include 3-way disjunction ('or').
wff (𝜑𝜓𝜒)
 
Syntaxw3a 973 Extend wff definition to include 3-way conjunction ('and').
wff (𝜑𝜓𝜒)
 
Definitiondf-3or 974 Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 762. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
 
Definitiondf-3an 975 Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 399. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
 
Theorem3orass 976 Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
 
Theorem3anass 977 Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
 
Theorem3anrot 978 Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
 
Theorem3orrot 979 Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
 
Theorem3ancoma 980 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
 
Theorem3ancomb 981 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
 
Theorem3orcomb 982 Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.)
((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
 
Theorem3anrev 983 Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
 
Theorem3anan32 984 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
 
Theorem3anan12 985 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
 
Theoremanandi3 986 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremanandi3r 987 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
 
Theorem3ioran 988 Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
(¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))
 
Theorem3simpa 989 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → (𝜑𝜓))
 
Theorem3simpb 990 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → (𝜑𝜒))
 
Theorem3simpc 991 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((𝜑𝜓𝜒) → (𝜓𝜒))
 
Theoremsimp1 992 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜑)
 
Theoremsimp2 993 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜓)
 
Theoremsimp3 994 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜒)
 
Theoremsimpl1 995 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
 
Theoremsimpl2 996 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
 
Theoremsimpl3 997 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
 
Theoremsimpr1 998 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜓)
 
Theoremsimpr2 999 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜒)
 
Theoremsimpr3 1000 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜃)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >