| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-i5r | GIF version | ||
| Description: Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ax-i5r | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . . 4 wff 𝜑 | |
| 2 | vx | . . . 4 setvar 𝑥 | |
| 3 | 1, 2 | wal 1362 | . . 3 wff ∀𝑥𝜑 |
| 4 | wps | . . . 4 wff 𝜓 | |
| 5 | 4, 2 | wal 1362 | . . 3 wff ∀𝑥𝜓 |
| 6 | 3, 5 | wi 4 | . 2 wff (∀𝑥𝜑 → ∀𝑥𝜓) |
| 7 | 3, 4 | wi 4 | . . 3 wff (∀𝑥𝜑 → 𝜓) |
| 8 | 7, 2 | wal 1362 | . 2 wff ∀𝑥(∀𝑥𝜑 → 𝜓) |
| 9 | 6, 8 | wi 4 | 1 wff ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| This axiom is referenced by: hbim 1559 hbimd 1587 |
| Copyright terms: Public domain | W3C validator |