| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-i5r | GIF version | ||
| Description: Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ax-i5r | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . . 4 wff 𝜑 | |
| 2 | vx | . . . 4 setvar 𝑥 | |
| 3 | 1, 2 | wal 1362 | . . 3 wff ∀𝑥𝜑 | 
| 4 | wps | . . . 4 wff 𝜓 | |
| 5 | 4, 2 | wal 1362 | . . 3 wff ∀𝑥𝜓 | 
| 6 | 3, 5 | wi 4 | . 2 wff (∀𝑥𝜑 → ∀𝑥𝜓) | 
| 7 | 3, 4 | wi 4 | . . 3 wff (∀𝑥𝜑 → 𝜓) | 
| 8 | 7, 2 | wal 1362 | . 2 wff ∀𝑥(∀𝑥𝜑 → 𝜓) | 
| 9 | 6, 8 | wi 4 | 1 wff ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: hbim 1559 hbimd 1587 | 
| Copyright terms: Public domain | W3C validator |