Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-i5r | GIF version |
Description: Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ax-i5r | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . 4 wff 𝜑 | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | 1, 2 | wal 1346 | . . 3 wff ∀𝑥𝜑 |
4 | wps | . . . 4 wff 𝜓 | |
5 | 4, 2 | wal 1346 | . . 3 wff ∀𝑥𝜓 |
6 | 3, 5 | wi 4 | . 2 wff (∀𝑥𝜑 → ∀𝑥𝜓) |
7 | 3, 4 | wi 4 | . . 3 wff (∀𝑥𝜑 → 𝜓) |
8 | 7, 2 | wal 1346 | . 2 wff ∀𝑥(∀𝑥𝜑 → 𝜓) |
9 | 6, 8 | wi 4 | 1 wff ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
This axiom is referenced by: hbim 1538 hbimd 1566 |
Copyright terms: Public domain | W3C validator |