ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbimd GIF version

Theorem hbimd 1553
Description: Deduction form of bound-variable hypothesis builder hbim 1525. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
hbimd.1 (𝜑 → ∀𝑥𝜑)
hbimd.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
hbimd.3 (𝜑 → (𝜒 → ∀𝑥𝜒))
Assertion
Ref Expression
hbimd (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))

Proof of Theorem hbimd
StepHypRef Expression
1 hbimd.3 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
21imim2d 54 . . 3 (𝜑 → ((𝜓𝜒) → (𝜓 → ∀𝑥𝜒)))
3 ax-4 1490 . . . . 5 (∀𝑥𝜓𝜓)
43imim1i 60 . . . 4 ((𝜓 → ∀𝑥𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
5 ax-i5r 1515 . . . 4 ((∀𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(∀𝑥𝜓𝜒))
64, 5syl 14 . . 3 ((𝜓 → ∀𝑥𝜒) → ∀𝑥(∀𝑥𝜓𝜒))
72, 6syl6 33 . 2 (𝜑 → ((𝜓𝜒) → ∀𝑥(∀𝑥𝜓𝜒)))
8 hbimd.1 . . 3 (𝜑 → ∀𝑥𝜑)
9 hbimd.2 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
109imim1d 75 . . 3 (𝜑 → ((∀𝑥𝜓𝜒) → (𝜓𝜒)))
118, 10alimdh 1447 . 2 (𝜑 → (∀𝑥(∀𝑥𝜓𝜒) → ∀𝑥(𝜓𝜒)))
127, 11syld 45 1 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1427  ax-gen 1429  ax-4 1490  ax-i5r 1515
This theorem is referenced by:  hbbid  1555  19.21ht  1561  equveli  1739  dvelimfALT2  1797
  Copyright terms: Public domain W3C validator