| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbimd | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder hbim 1559. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hbimd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbimd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| hbimd.3 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| Ref | Expression |
|---|---|
| hbimd | ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbimd.3 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 2 | 1 | imim2d 54 | . . 3 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → ∀𝑥𝜒))) |
| 3 | ax-4 1524 | . . . . 5 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 4 | 3 | imim1i 60 | . . . 4 ⊢ ((𝜓 → ∀𝑥𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) |
| 5 | ax-i5r 1549 | . . . 4 ⊢ ((∀𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(∀𝑥𝜓 → 𝜒)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ ((𝜓 → ∀𝑥𝜒) → ∀𝑥(∀𝑥𝜓 → 𝜒)) |
| 7 | 2, 6 | syl6 33 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(∀𝑥𝜓 → 𝜒))) |
| 8 | hbimd.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 9 | hbimd.2 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 10 | 9 | imim1d 75 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → 𝜒) → (𝜓 → 𝜒))) |
| 11 | 8, 10 | alimdh 1481 | . 2 ⊢ (𝜑 → (∀𝑥(∀𝑥𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 12 | 7, 11 | syld 45 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-4 1524 ax-i5r 1549 |
| This theorem is referenced by: hbbid 1589 19.21ht 1595 equveli 1773 dvelimfALT2 1831 |
| Copyright terms: Public domain | W3C validator |