ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spi GIF version

Theorem spi 1560
Description: Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 ax-4 1534 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-4 1534
This theorem is referenced by:  19.8a  1614  hbe1a  2052  darii  2155  barbari  2157  cesare  2159  camestres  2160  festino  2161  baroco  2162  cesaro  2163  camestros  2164  datisi  2165  disamis  2166  felapton  2169  darapti  2170  calemes  2171  dimatis  2172  fresison  2173  calemos  2174  fesapo  2175  bamalip  2176  tfi  4634  acexmid  5950  bdsep1  15895  strcoll2  15993  sscoll2  15998
  Copyright terms: Public domain W3C validator