ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spi GIF version

Theorem spi 1516
Description: Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 ax-4 1490 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wal 1333
This theorem was proved from axioms:  ax-mp 5  ax-4 1490
This theorem is referenced by:  19.8a  1570  hbe1a  2003  darii  2106  barbari  2108  cesare  2110  camestres  2111  festino  2112  baroco  2113  cesaro  2114  camestros  2115  datisi  2116  disamis  2117  felapton  2120  darapti  2121  calemes  2122  dimatis  2123  fresison  2124  calemos  2125  fesapo  2126  bamalip  2127  tfi  4541  acexmid  5823  bdsep1  13471  strcoll2  13569  sscoll2  13574
  Copyright terms: Public domain W3C validator