ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spi GIF version

Theorem spi 1547
Description: Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 ax-4 1521 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-4 1521
This theorem is referenced by:  19.8a  1601  hbe1a  2035  darii  2138  barbari  2140  cesare  2142  camestres  2143  festino  2144  baroco  2145  cesaro  2146  camestros  2147  datisi  2148  disamis  2149  felapton  2152  darapti  2153  calemes  2154  dimatis  2155  fresison  2156  calemos  2157  fesapo  2158  bamalip  2159  tfi  4596  acexmid  5891  bdsep1  15041  strcoll2  15139  sscoll2  15144
  Copyright terms: Public domain W3C validator