![]() |
Intuitionistic Logic Explorer Theorem List (p. 16 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 19.3 1501 | A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.16 1502 | Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | ||
Theorem | 19.17 1503 | Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ 𝜓)) | ||
Theorem | 19.21h 1504 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." New proofs should use 19.21 1530 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 19.21bi 1505 | Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 19.21bbi 1506 | Inference removing double quantifier. (Contributed by NM, 20-Apr-1994.) |
⊢ (𝜑 → ∀𝑥∀𝑦𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 19.27h 1507 | Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.27 1508 | Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.28h 1509 | Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
Theorem | 19.28 1510 | Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
Theorem | nfan1 1511 | A closed form of nfan 1512. (Contributed by Mario Carneiro, 3-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | ||
Theorem | nfan 1512 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | ||
Theorem | nf3an 1513 | If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) | ||
Theorem | nford 1514 | If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓 ∨ 𝜒). (Contributed by Jim Kingdon, 29-Oct-2019.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∨ 𝜒)) | ||
Theorem | nfand 1515 | If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | nf3and 1516 | Deduction form of bound-variable hypothesis builder nf3an 1513. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝜃) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | hbim1 1517 | A closed form of hbim 1492. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | nfim1 1518 | A closed form of nfim 1519. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ Ⅎ𝑥(𝜑 → 𝜓) | ||
Theorem | nfim 1519 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 → 𝜓) | ||
Theorem | hbimd 1520 | Deduction form of bound-variable hypothesis builder hbim 1492. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) | ||
Theorem | nfor 1521 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∨ 𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) | ||
Theorem | hbbid 1522 | Deduction form of bound-variable hypothesis builder hbbi 1495. (Contributed by NM, 1-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ↔ 𝜒) → ∀𝑥(𝜓 ↔ 𝜒))) | ||
Theorem | nfal 1523 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦𝜑 | ||
Theorem | nfnf 1524 | If 𝑥 is not free in 𝜑, it is not free in Ⅎ𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 | ||
Theorem | nfalt 1525 | Closed form of nfal 1523. (Contributed by Jim Kingdon, 11-May-2018.) |
⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) | ||
Theorem | nfa2 1526 | Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 | ||
Theorem | nfia1 1527 | Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) | ||
Theorem | 19.21ht 1528 | Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | 19.21t 1529 | Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | 19.21 1530 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
Theorem | stdpc5 1531 | An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis Ⅎ𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑." With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 1646. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | ||
Theorem | nfimd 1532 | If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) | ||
Theorem | aaanh 1533 | Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | ||
Theorem | aaan 1534 | Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) | ||
Theorem | nfbid 1535 | If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ↔ 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) | ||
Theorem | nfbi 1536 | If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) | ||
Theorem | 19.8a 1537 | If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∃𝑥𝜑) | ||
Theorem | 19.8ad 1538 | If a wff is true, it is true for at least one instance. Deduction form of 19.8a 1537. (Contributed by DAW, 13-Feb-2017.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | 19.23bi 1539 | Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥𝜑 → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | exlimih 1540 | Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimi 1541 | Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exlimd2 1542 | Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1543 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | exlimdh 1543 | Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | exlimd 1544 | Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | ||
Theorem | exlimiv 1545* |
Inference from Theorem 19.23 of [Margaris] p.
90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1545 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 7 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exim 1546 | Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | ||
Theorem | eximi 1547 | Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) | ||
Theorem | 2eximi 1548 | Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) | ||
Theorem | eximii 1549 | Inference associated with eximi 1547. (Contributed by BJ, 3-Feb-2018.) |
⊢ ∃𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ ∃𝑥𝜓 | ||
Theorem | alinexa 1550 | A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | exbi 1551 | Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | ||
Theorem | exbii 1552 | Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) | ||
Theorem | 2exbii 1553 | Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) | ||
Theorem | 3exbii 1554 | Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) | ||
Theorem | exancom 1555 | Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | ||
Theorem | alrimdd 1556 | Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | alrimd 1557 | Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | eximdh 1558 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | ||
Theorem | eximd 1559 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | ||
Theorem | nexd 1560 | Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥𝜓) | ||
Theorem | exbidh 1561 | Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | albid 1562 | Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
Theorem | exbid 1563 | Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | exsimpl 1564 | Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | ||
Theorem | exsimpr 1565 | Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) | ||
Theorem | alexdc 1566 | Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1592. (Contributed by Jim Kingdon, 2-Jun-2018.) |
⊢ (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)) | ||
Theorem | 19.29 1567 | Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29r 1568 | Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29r2 1569 | Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.) |
⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29x 1570 | Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.) |
⊢ ((∃𝑥∀𝑦𝜑 ∧ ∀𝑥∃𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | 19.35-1 1571 | Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic (Contributed by Mario Carneiro, 2-Feb-2015.) |
⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.35i 1572 | Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | ||
Theorem | 19.25 1573 | Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) | ||
Theorem | 19.30dc 1574 | Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ (DECID ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) | ||
Theorem | 19.43 1575 | Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | 19.33b2 1576 | The antecedent provides a condition implying the converse of 19.33 1428. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1577 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.) |
⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))) | ||
Theorem | 19.33bdc 1577 | Converse of 19.33 1428 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1576 (Contributed by Jim Kingdon, 23-Apr-2018.) |
⊢ (DECID ∃𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))) | ||
Theorem | 19.40 1578 | Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.40-2 1579 | Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) | ||
Theorem | exintrbi 1580 | Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) | ||
Theorem | exintr 1581 | Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | ||
Theorem | alsyl 1582 | Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) |
⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) | ||
Theorem | hbex 1583 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) | ||
Theorem | nfex 1584 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦𝜑 | ||
Theorem | 19.2 1585 | Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.) |
⊢ (∀𝑥𝜑 → ∃𝑦𝜑) | ||
Theorem | i19.24 1586 | Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1571, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | i19.39 1587 | Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1571, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | 19.9ht 1588 | A closed version of one direction of 19.9 1591. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9t 1589 | A closed version of 19.9 1591. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | ||
Theorem | 19.9h 1590 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.9 1591 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | alexim 1592 | One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1566. (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | ||
Theorem | exnalim 1593 | One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
Theorem | exanaliim 1594 | A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | alexnim 1595 | A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) | ||
Theorem | ax6blem 1596 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1597 compared to hbnt 1599. (Contributed by GD, 27-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | ax6b 1597 |
Quantified Negation. Axiom C5-2 of [Monk2] p.
113.
(Contributed by GD, 27-Jan-2018.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbn1 1598 | 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbnt 1599 | Closed theorem version of bound-variable hypothesis builder hbn 1600. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbn 1600 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |