| Intuitionistic Logic Explorer Theorem List (p. 16 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nfxfrd 1501 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜒 → Ⅎ𝑥𝜑) | ||
| Theorem | alcoms 1502 | Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.) |
| ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) ⇒ ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) | ||
| Theorem | hbal 1503 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | ||
| Theorem | alcom 1504 | Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) | ||
| Theorem | alrimdh 1505 | Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
| Theorem | albidh 1506 | Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
| Theorem | 19.26 1507 | Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | 19.26-2 1508 | Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) | ||
| Theorem | 19.26-3an 1509 | Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.) |
| ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) | ||
| Theorem | 19.33 1510 | Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | alrot3 1511 | Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
| ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) | ||
| Theorem | alrot4 1512 | Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.) |
| ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) | ||
| Theorem | albiim 1513 | Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | ||
| Theorem | 2albiim 1514 | Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | ||
| Theorem | hband 1515 | Deduction form of bound-variable hypothesis builder hban 1573. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) | ||
| Theorem | hb3and 1516 | Deduction form of bound-variable hypothesis builder hb3an 1576. (Contributed by NM, 17-Feb-2013.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝜃 → ∀𝑥𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
| Theorem | hbald 1517 | Deduction form of bound-variable hypothesis builder hbal 1503. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) | ||
| Syntax | wex 1518 | Extend wff definition to include the existential quantifier ("there exists"). |
| wff ∃𝑥𝜑 | ||
| Axiom | ax-ie1 1519 | 𝑥 is bound in ∃𝑥𝜑. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
| Axiom | ax-ie2 1520 | Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
| Theorem | hbe1 1521 | 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
| Theorem | nfe1 1522 | 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥∃𝑥𝜑 | ||
| Theorem | 19.23ht 1523 | Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
| Theorem | 19.23h 1524 | Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
| Theorem | alnex 1525 | Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1527 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
| ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | ||
| Theorem | nex 1526 | Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ ¬ ∃𝑥𝜑 | ||
| Theorem | dfexdc 1527 | Defining ∃𝑥𝜑 given decidability. It is common in classical logic to define ∃𝑥𝜑 as ¬ ∀𝑥¬ 𝜑 but in intuitionistic logic without a decidability condition, that is only an implication not an equivalence, as seen at exalim 1528. (Contributed by Jim Kingdon, 15-Mar-2018.) |
| ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)) | ||
| Theorem | exalim 1528 | One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1527. (Contributed by Jim Kingdon, 29-Jul-2018.) |
| ⊢ (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑) | ||
The equality predicate was introduced above in wceq 1375 for use by df-tru 1378. See the comments in that section. In this section, we continue with the first "real" use of it. | ||
| Theorem | weq 1529 |
Extend wff definition to include atomic formulas using the equality
predicate.
(Instead of introducing weq 1529 as an axiomatic statement, as was done in an older version of this database, we introduce it by "proving" a special case of set theory's more general wceq 1375. This lets us avoid overloading the = connective, thus preventing ambiguity that would complicate certain Metamath parsers. However, logically weq 1529 is considered to be a primitive syntax, even though here it is artificially "derived" from wceq 1375. Note: To see the proof steps of this syntax proof, type "show proof weq /all" in the Metamath program.) (Contributed by NM, 24-Jan-2006.) |
| wff 𝑥 = 𝑦 | ||
| Axiom | ax-8 1530 |
Axiom of Equality. One of the equality and substitution axioms of
predicate calculus with equality. This is similar to, but not quite, a
transitive law for equality (proved later as equtr 1735). Axiom scheme C8'
in [Megill] p. 448 (p. 16 of the preprint).
Also appears as Axiom C7 of
[Monk2] p. 105.
Axioms ax-8 1530 through ax-16 1840 are the axioms having to do with equality, substitution, and logical properties of our binary predicate ∈ (which later in set theory will mean "is a member of"). Note that all axioms except ax-16 1840 and ax-17 1552 are still valid even when 𝑥, 𝑦, and 𝑧 are replaced with the same variable because they do not have any distinct variable (Metamath's $d) restrictions. Distinct variable restrictions are required for ax-16 1840 and ax-17 1552 only. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
| Axiom | ax-10 1531 |
Axiom of Quantifier Substitution. One of the equality and substitution
axioms of predicate calculus with equality. Appears as Lemma L12 in
[Megill] p. 445 (p. 12 of the preprint).
The original version of this axiom was ax-10o 1742 ("o" for "old") and was replaced with this shorter ax-10 1531 in May 2008. The old axiom is proved from this one as Theorem ax10o 1741. Conversely, this axiom is proved from ax-10o 1742 as Theorem ax10 1743. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Axiom | ax-11 1532 |
Axiom of Variable Substitution. One of the 5 equality axioms of predicate
calculus. The final consequent ∀𝑥(𝑥 = 𝑦 → 𝜑) is a way of
expressing "𝑦 substituted for 𝑥 in wff
𝜑
" (cf. sb6 1913). It
is based on Lemma 16 of [Tarski] p. 70 and
Axiom C8 of [Monk2] p. 105,
from which it can be proved by cases.
Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1853, ax11v2 1846 and ax-11o 1849. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Axiom | ax-i12 1533 |
Axiom of Quantifier Introduction. One of the equality and substitution
axioms of predicate calculus with equality. Informally, it says that
whenever 𝑧 is distinct from 𝑥 and
𝑦,
and 𝑥 =
𝑦 is true,
then 𝑥 = 𝑦 quantified with 𝑧 is also
true. In other words, 𝑧
is irrelevant to the truth of 𝑥 = 𝑦. Axiom scheme C9' in [Megill]
p. 448 (p. 16 of the preprint). It apparently does not otherwise appear
in the literature but is easily proved from textbook predicate calculus by
cases.
This axiom has been modified from the original ax12 1538 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias ax12or 1534 instead, for labeling consistency. (New usage is discouraged.) |
| ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
| Theorem | ax12or 1534 | Alias for ax-i12 1533, to be used in place of it for labeling consistency. (Contributed by NM, 3-Feb-2015.) |
| ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
| Axiom | ax-bndl 1535 |
Axiom of bundling. The general idea of this axiom is that two variables
are either distinct or non-distinct. That idea could be expressed as
∀𝑧𝑧 = 𝑥 ∨ ¬ ∀𝑧𝑧 = 𝑥. However, we instead choose an axiom
which has many of the same consequences, but which is different with
respect to a universe which contains only one object. ∀𝑧𝑧 = 𝑥 holds
if 𝑧 and 𝑥 are the same variable,
likewise for 𝑧 and 𝑦,
and ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧𝑥 = 𝑦) holds if 𝑧 is distinct from
the others (and the universe has at least two objects).
As with other statements of the form "x is decidable (either true or false)", this does not entail the full Law of the Excluded Middle (which is the proposition that all statements are decidable), but instead merely the assertion that particular kinds of statements are decidable (or in this case, an assertion similar to decidability). This axiom implies ax-i12 1533 as can be seen at axi12 1540. Whether ax-bndl 1535 can be proved from the remaining axioms including ax-i12 1533 is not known. The reason we call this "bundling" is that a statement without a distinct variable constraint "bundles" together two statements, one in which the two variables are the same and one in which they are different. (Contributed by Mario Carneiro and Jim Kingdon, 14-Mar-2018.) |
| ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
| Axiom | ax-4 1536 |
Axiom of Specialization. A quantified wff implies the wff without a
quantifier (i.e. an instance, or special case, of the generalized wff).
In other words if something is true for all 𝑥, it is true for any
specific 𝑥 (that would typically occur as a free
variable in the wff
substituted for 𝜑). (A free variable is one that does
not occur in
the scope of a quantifier: 𝑥 and 𝑦 are both free in 𝑥 = 𝑦,
but only 𝑥 is free in ∀𝑦𝑥 = 𝑦.) Axiom scheme C5' in [Megill]
p. 448 (p. 16 of the preprint). Also appears as Axiom B5 of [Tarski]
p. 67 (under his system S2, defined in the last paragraph on p. 77).
Note that the converse of this axiom does not hold in general, but a weaker inference form of the converse holds and is expressed as rule ax-gen 1475. Conditional forms of the converse are given by ax12 1538, ax-16 1840, and ax-17 1552. Unlike the more general textbook Axiom of Specialization, we cannot choose a variable different from 𝑥 for the special case. For use, that requires the assistance of equality axioms, and we deal with it later after we introduce the definition of proper substitution - see stdpc4 1801. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | sp 1537 | Specialization. Another name for ax-4 1536. (Contributed by NM, 21-May-2008.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | ax12 1538 | Rederive the original version of the axiom from ax-i12 1533. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
| Theorem | hbequid 1539 |
Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us
that any variable, including 𝑥, is effectively not free in
𝑥 =
𝑥, even though 𝑥 is
technically free according to the
traditional definition of free variable.
The proof uses only ax-8 1530 and ax-i12 1533 on top of (the FOL analogue of) modal logic KT. This shows that this can be proved without ax-i9 1556, even though Theorem equid 1727 cannot. A shorter proof using ax-i9 1556 is obtainable from equid 1727 and hbth 1489. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.) |
| ⊢ (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | ||
| Theorem | axi12 1540 | Proof that ax-i12 1533 follows from ax-bndl 1535. So that we can track which theorems rely on ax-bndl 1535, proofs should reference ax12or 1534 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.) |
| ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
| Theorem | alequcom 1541 | Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | alequcoms 1542 | A commutation rule for identical variable specifiers. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | nalequcoms 1543 | A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 2-Feb-2015.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | nfr 1544 | Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
| ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | ||
| Theorem | nfri 1545 | Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
| Theorem | nfrd 1546 | Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
| Theorem | alimd 1547 | Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
| Theorem | alrimi 1548 | Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜓) | ||
| Theorem | nfd 1549 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
| Theorem | nfdh 1550 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
| Theorem | nfrimi 1551 | Moving an antecedent outside Ⅎ. (Contributed by Jim Kingdon, 23-Mar-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥(𝜑 → 𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
| Axiom | ax-17 1552* |
Axiom to quantify a variable over a formula in which it does not occur.
Axiom C5 in [Megill] p. 444 (p. 11 of the
preprint). Also appears as
Axiom B6 (p. 75) of system S2 of [Tarski]
p. 77 and Axiom C5-1 of
[Monk2] p. 113.
(Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) | ||
| Theorem | a17d 1553* | ax-17 1552 with antecedent. (Contributed by NM, 1-Mar-2013.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
| Theorem | nfv 1554* | If 𝑥 is not present in 𝜑, then 𝑥 is not free in 𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 | ||
| Theorem | nfvd 1555* | nfv 1554 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1611. (Contributed by Mario Carneiro, 6-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
| Axiom | ax-i9 1556 | Axiom of Existence. One of the equality and substitution axioms of predicate calculus with equality. One thing this axiom tells us is that at least one thing exists (although ax-4 1536 and possibly others also tell us that, i.e. they are not valid in the empty domain of a "free logic"). In this form (not requiring that 𝑥 and 𝑦 be distinct) it was used in an axiom system of Tarski (see Axiom B7' in footnote 1 of [KalishMontague] p. 81.) Another name for this theorem is a9e 1722, which has additional remarks. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| ⊢ ∃𝑥 𝑥 = 𝑦 | ||
| Theorem | ax-9 1557 | Derive ax-9 1557 from ax-i9 1556, the modified version for intuitionistic logic. Although ax-9 1557 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1556. (Contributed by NM, 3-Feb-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | equidqe 1558 | equid 1727 with some quantification and negation without using ax-4 1536 or ax-17 1552. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) |
| ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | ||
| Theorem | ax4sp1 1559 | A special case of ax-4 1536 without using ax-4 1536 or ax-17 1552. (Contributed by NM, 13-Jan-2011.) |
| ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | ||
| Axiom | ax-ial 1560 | 𝑥 is not free in ∀𝑥𝜑. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
| Axiom | ax-i5r 1561 | Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.) |
| ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spi 1562 | Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∀𝑥𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | sps 1563 | Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | spsd 1564 | Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | nfbidf 1565 | An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | ||
| Theorem | hba1 1566 | 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
| Theorem | nfa1 1567 | 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥∀𝑥𝜑 | ||
| Theorem | axc4i 1568 | Inference version of 19.21 1609. (Contributed by NM, 3-Jan-1993.) |
| ⊢ (∀𝑥𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | a5i 1569 | Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
| Theorem | nfnf1 1570 | 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | ||
| Theorem | hbim 1571 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
| Theorem | hbor 1572 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∨ 𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | hban 1573 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | ||
| Theorem | hbbi 1574 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ↔ 𝜓). (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ↔ 𝜓) → ∀𝑥(𝜑 ↔ 𝜓)) | ||
| Theorem | hb3or 1575 | If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∨ 𝜓 ∨ 𝜒). (Contributed by NM, 14-Sep-2003.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → ∀𝑥(𝜑 ∨ 𝜓 ∨ 𝜒)) | ||
| Theorem | hb3an 1576 | If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by NM, 14-Sep-2003.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
| Theorem | hba2 1577 | Lemma 24 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.) |
| ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦∀𝑥𝜑) | ||
| Theorem | hbia1 1578 | Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.) |
| ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓)) | ||
| Theorem | 19.3h 1579 | A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-May-2007.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥𝜑 ↔ 𝜑) | ||
| Theorem | 19.3 1580 | A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ 𝜑) | ||
| Theorem | 19.16 1581 | Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | ||
| Theorem | 19.17 1582 | Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ 𝜓)) | ||
| Theorem | 19.21h 1583 | Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". New proofs should use 19.21 1609 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | ||
| Theorem | 19.21bi 1584 | Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.21bbi 1585 | Inference removing double quantifier. (Contributed by NM, 20-Apr-1994.) |
| ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.27h 1586 | Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
| Theorem | 19.27 1587 | Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | ||
| Theorem | 19.28h 1588 | Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | 19.28 1589 | Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | nfan1 1590 | A closed form of nfan 1591. (Contributed by Mario Carneiro, 3-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | ||
| Theorem | nfan 1591 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | ||
| Theorem | nf3an 1592 | If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) | ||
| Theorem | nford 1593 | If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓 ∨ 𝜒). (Contributed by Jim Kingdon, 29-Oct-2019.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∨ 𝜒)) | ||
| Theorem | nfand 1594 | If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) | ||
| Theorem | nf3and 1595 | Deduction form of bound-variable hypothesis builder nf3an 1592. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → Ⅎ𝑥𝜃) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | hbim1 1596 | A closed form of hbim 1571. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
| Theorem | nfim1 1597 | A closed form of nfim 1598. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ Ⅎ𝑥(𝜑 → 𝜓) | ||
| Theorem | nfim 1598 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 → 𝜓) | ||
| Theorem | hbimd 1599 | Deduction form of bound-variable hypothesis builder hbim 1571. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) | ||
| Theorem | nfor 1600 | If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∨ 𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |