HomeHome Intuitionistic Logic Explorer
Theorem List (p. 16 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1501-1600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhbequid 1501 Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable.

The proof uses only ax-8 1492 and ax-i12 1495 on top of (the FOL analogue of) modal logic KT. This shows that this can be proved without ax-i9 1518, even though Theorem equid 1689 cannot. A shorter proof using ax-i9 1518 is obtainable from equid 1689 and hbth 1451. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.)

(𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
 
Theoremaxi12 1502 Proof that ax-i12 1495 follows from ax-bndl 1497. So that we can track which theorems rely on ax-bndl 1497, proofs should reference ax12or 1496 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.)
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
 
Theoremalequcom 1503 Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremalequcoms 1504 A commutation rule for identical variable specifiers. (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦𝜑)       (∀𝑦 𝑦 = 𝑥𝜑)
 
Theoremnalequcoms 1505 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 2-Feb-2015.)
(¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑦 𝑦 = 𝑥𝜑)
 
Theoremnfr 1506 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
(Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
 
Theoremnfri 1507 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremnfrd 1508 Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → (𝜓 → ∀𝑥𝜓))
 
Theoremalimd 1509 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalrimi 1510 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremnfd 1511 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremnfdh 1512 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremnfrimi 1513 Moving an antecedent outside . (Contributed by Jim Kingdon, 23-Mar-2018.)
𝑥𝜑    &   𝑥(𝜑𝜓)       (𝜑 → Ⅎ𝑥𝜓)
 
1.3.3  Axiom ax-17 - first use of the $d distinct variable statement
 
Axiomax-17 1514* Axiom to quantify a variable over a formula in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of [Monk2] p. 113.

(Contributed by NM, 5-Aug-1993.)

(𝜑 → ∀𝑥𝜑)
 
Theorema17d 1515* ax-17 1514 with antecedent. (Contributed by NM, 1-Mar-2013.)
(𝜑 → (𝜓 → ∀𝑥𝜓))
 
Theoremnfv 1516* If 𝑥 is not present in 𝜑, then 𝑥 is not free in 𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑
 
Theoremnfvd 1517* nfv 1516 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1573. (Contributed by Mario Carneiro, 6-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)
 
1.3.4  Introduce Axiom of Existence
 
Axiomax-i9 1518 Axiom of Existence. One of the equality and substitution axioms of predicate calculus with equality. One thing this axiom tells us is that at least one thing exists (although ax-4 1498 and possibly others also tell us that, i.e. they are not valid in the empty domain of a "free logic"). In this form (not requiring that 𝑥 and 𝑦 be distinct) it was used in an axiom system of Tarski (see Axiom B7' in footnote 1 of [KalishMontague] p. 81.) Another name for this theorem is a9e 1684, which has additional remarks. (Contributed by Mario Carneiro, 31-Jan-2015.)
𝑥 𝑥 = 𝑦
 
Theoremax-9 1519 Derive ax-9 1519 from ax-i9 1518, the modified version for intuitionistic logic. Although ax-9 1519 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1518. (Contributed by NM, 3-Feb-2015.)
¬ ∀𝑥 ¬ 𝑥 = 𝑦
 
Theoremequidqe 1520 equid 1689 with some quantification and negation without using ax-4 1498 or ax-17 1514. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.)
¬ ∀𝑦 ¬ 𝑥 = 𝑥
 
Theoremax4sp1 1521 A special case of ax-4 1498 without using ax-4 1498 or ax-17 1514. (Contributed by NM, 13-Jan-2011.)
(∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)
 
1.3.5  Additional intuitionistic axioms
 
Axiomax-ial 1522 𝑥 is not free in 𝑥𝜑. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Axiomax-i5r 1523 Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.)
((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑𝜓))
 
1.3.6  Predicate calculus including ax-4, without distinct variables
 
Theoremspi 1524 Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
𝑥𝜑       𝜑
 
Theoremsps 1525 Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theoremspsd 1526 Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremnfbidf 1527 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
 
Theoremhba1 1528 𝑥 is not free in 𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremnfa1 1529 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝑥𝜑
 
Theoremaxc4i 1530 Inference version of 19.21 1571. (Contributed by NM, 3-Jan-1993.)
(∀𝑥𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theorema5i 1531 Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremnfnf1 1532 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝑥𝜑
 
Theoremhbim 1533 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhbor 1534 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhban 1535 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhbbi 1536 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremhb3or 1537 If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by NM, 14-Sep-2003.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜒 → ∀𝑥𝜒)       ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))
 
Theoremhb3an 1538 If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by NM, 14-Sep-2003.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜒 → ∀𝑥𝜒)       ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))
 
Theoremhba2 1539 Lemma 24 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
(∀𝑦𝑥𝜑 → ∀𝑥𝑦𝑥𝜑)
 
Theoremhbia1 1540 Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓))
 
Theorem19.3h 1541 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-May-2007.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥𝜑𝜑)
 
Theorem19.3 1542 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥𝜑𝜑)
 
Theorem19.16 1543 Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))
 
Theorem19.17 1544 Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.21h 1545 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". New proofs should use 19.21 1571 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theorem19.21bi 1546 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜓)       (𝜑𝜓)
 
Theorem19.21bbi 1547 Inference removing double quantifier. (Contributed by NM, 20-Apr-1994.)
(𝜑 → ∀𝑥𝑦𝜓)       (𝜑𝜓)
 
Theorem19.27h 1548 Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜓 → ∀𝑥𝜓)       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.27 1549 Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28h 1550 Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.28 1551 Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theoremnfan1 1552 A closed form of nfan 1553. (Contributed by Mario Carneiro, 3-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfan 1553 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremnf3an 1554 If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑    &   𝑥𝜓    &   𝑥𝜒       𝑥(𝜑𝜓𝜒)
 
Theoremnford 1555 If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓𝜒). (Contributed by Jim Kingdon, 29-Oct-2019.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnfand 1556 If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnf3and 1557 Deduction form of bound-variable hypothesis builder nf3an 1554. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → Ⅎ𝑥𝜃)       (𝜑 → Ⅎ𝑥(𝜓𝜒𝜃))
 
Theoremhbim1 1558 A closed form of hbim 1533. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremnfim1 1559 A closed form of nfim 1560. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfim 1560 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremhbimd 1561 Deduction form of bound-variable hypothesis builder hbim 1533. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremnfor 1562 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremhbbid 1563 Deduction form of bound-variable hypothesis builder hbbi 1536. (Contributed by NM, 1-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremnfal 1564 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1498. (Revised by Gino Giotto, 25-Aug-2024.)
𝑥𝜑       𝑥𝑦𝜑
 
Theoremnfnf 1565 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       𝑥𝑦𝜑
 
Theoremnfalt 1566 Closed form of nfal 1564. (Contributed by Jim Kingdon, 11-May-2018.)
(∀𝑦𝑥𝜑 → Ⅎ𝑥𝑦𝜑)
 
Theoremnfa2 1567 Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝑦𝑥𝜑
 
Theoremnfia1 1568 Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥(∀𝑥𝜑 → ∀𝑥𝜓)
 
Theorem19.21ht 1569 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21t 1570 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21 1571 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑". (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremstdpc5 1572 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 1690. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theoremnfimd 1573 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremaaanh 1574 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)       (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
 
Theoremaaan 1575 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
𝑦𝜑    &   𝑥𝜓       (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
 
Theoremnfbid 1576 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnfbi 1577 If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
1.3.7  The existential quantifier
 
Theorem19.8a 1578 If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∃𝑥𝜑)
 
Theorem19.8ad 1579 If a wff is true, it is true for at least one instance. Deduction form of 19.8a 1578. (Contributed by DAW, 13-Feb-2017.)
(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theorem19.23bi 1580 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝜑𝜓)       (𝜑𝜓)
 
Theoremexlimih 1581 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(𝜓 → ∀𝑥𝜓)    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimi 1582 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimd2 1583 Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1584 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimdh 1584 Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
(𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimd 1585 Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimiv 1586* Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. 𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1586 to arrive at (∃𝑥𝜑𝜓). Finally, we separately prove 𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)

(𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexim 1587 Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremeximi 1588 Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theorem2eximi 1589 Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
 
Theoremeximii 1590 Inference associated with eximi 1588. (Contributed by BJ, 3-Feb-2018.)
𝑥𝜑    &   (𝜑𝜓)       𝑥𝜓
 
Theoremalinexa 1591 A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
(∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
 
Theoremexbi 1592 Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremexbii 1593 Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.)
(𝜑𝜓)       (∃𝑥𝜑 ↔ ∃𝑥𝜓)
 
Theorem2exbii 1594 Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)
 
Theorem3exbii 1595 Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
 
Theoremexancom 1596 Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
 
Theoremalrimdd 1597 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalrimd 1598 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximdh 1599 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremeximd 1600 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >