HomeHome Intuitionistic Logic Explorer
Theorem List (p. 16 of 129)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1501-1600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem19.3 1501 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥𝜑𝜑)
 
Theorem19.16 1502 Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∀𝑥𝜓))
 
Theorem19.17 1503 Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.21h 1504 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." New proofs should use 19.21 1530 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theorem19.21bi 1505 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜓)       (𝜑𝜓)
 
Theorem19.21bbi 1506 Inference removing double quantifier. (Contributed by NM, 20-Apr-1994.)
(𝜑 → ∀𝑥𝑦𝜓)       (𝜑𝜓)
 
Theorem19.27h 1507 Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜓 → ∀𝑥𝜓)       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.27 1508 Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28h 1509 Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.28 1510 Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theoremnfan1 1511 A closed form of nfan 1512. (Contributed by Mario Carneiro, 3-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfan 1512 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremnf3an 1513 If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑    &   𝑥𝜓    &   𝑥𝜒       𝑥(𝜑𝜓𝜒)
 
Theoremnford 1514 If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓𝜒). (Contributed by Jim Kingdon, 29-Oct-2019.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnfand 1515 If in a context 𝑥 is not free in 𝜓 and 𝜒, it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnf3and 1516 Deduction form of bound-variable hypothesis builder nf3an 1513. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → Ⅎ𝑥𝜃)       (𝜑 → Ⅎ𝑥(𝜓𝜒𝜃))
 
Theoremhbim1 1517 A closed form of hbim 1492. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremnfim1 1518 A closed form of nfim 1519. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       𝑥(𝜑𝜓)
 
Theoremnfim 1519 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremhbimd 1520 Deduction form of bound-variable hypothesis builder hbim 1492. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremnfor 1521 If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by Jim Kingdon, 11-Mar-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
Theoremhbbid 1522 Deduction form of bound-variable hypothesis builder hbbi 1495. (Contributed by NM, 1-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremnfal 1523 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥𝑦𝜑
 
Theoremnfnf 1524 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       𝑥𝑦𝜑
 
Theoremnfalt 1525 Closed form of nfal 1523. (Contributed by Jim Kingdon, 11-May-2018.)
(∀𝑦𝑥𝜑 → Ⅎ𝑥𝑦𝜑)
 
Theoremnfa2 1526 Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝑦𝑥𝜑
 
Theoremnfia1 1527 Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥(∀𝑥𝜑 → ∀𝑥𝜓)
 
Theorem19.21ht 1528 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21t 1529 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorem19.21 1530 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "𝑥 is not free in 𝜑." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremstdpc5 1531 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑." With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 1646. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theoremnfimd 1532 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremaaanh 1533 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)       (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
 
Theoremaaan 1534 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
𝑦𝜑    &   𝑥𝜓       (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
 
Theoremnfbid 1535 If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
(𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → Ⅎ𝑥(𝜓𝜒))
 
Theoremnfbi 1536 If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
𝑥𝜑    &   𝑥𝜓       𝑥(𝜑𝜓)
 
1.3.7  The existential quantifier
 
Theorem19.8a 1537 If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∃𝑥𝜑)
 
Theorem19.8ad 1538 If a wff is true, it is true for at least one instance. Deduction form of 19.8a 1537. (Contributed by DAW, 13-Feb-2017.)
(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theorem19.23bi 1539 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝜑𝜓)       (𝜑𝜓)
 
Theoremexlimih 1540 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(𝜓 → ∀𝑥𝜓)    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimi 1541 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimd2 1542 Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1543 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimdh 1543 Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
(𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimd 1544 Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimiv 1545* Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. 𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1545 to arrive at (∃𝑥𝜑𝜓). Finally, we separately prove 𝑥𝜑 and detach it with modus ponens ax-mp 7 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)

(𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexim 1546 Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremeximi 1547 Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theorem2eximi 1548 Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
 
Theoremeximii 1549 Inference associated with eximi 1547. (Contributed by BJ, 3-Feb-2018.)
𝑥𝜑    &   (𝜑𝜓)       𝑥𝜓
 
Theoremalinexa 1550 A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
(∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
 
Theoremexbi 1551 Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremexbii 1552 Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.)
(𝜑𝜓)       (∃𝑥𝜑 ↔ ∃𝑥𝜓)
 
Theorem2exbii 1553 Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)
 
Theorem3exbii 1554 Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
 
Theoremexancom 1555 Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
 
Theoremalrimdd 1556 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalrimd 1557 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximdh 1558 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremeximd 1559 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremnexd 1560 Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremexbidh 1561 Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremalbid 1562 Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbid 1563 Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremexsimpl 1564 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
 
Theoremexsimpr 1565 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
 
Theoremalexdc 1566 Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1592. (Contributed by Jim Kingdon, 2-Jun-2018.)
(∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
 
Theorem19.29 1567 Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r 1568 Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r2 1569 Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.29x 1570 Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.35-1 1571 Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic (Contributed by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
Theorem19.35i 1572 Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∃𝑥𝜓)
 
Theorem19.25 1573 Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
 
Theorem19.30dc 1574 Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓)))
 
Theorem19.43 1575 Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.33b2 1576 The antecedent provides a condition implying the converse of 19.33 1428. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1577 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.)
((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.33bdc 1577 Converse of 19.33 1428 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1576 (Contributed by Jim Kingdon, 23-Apr-2018.)
(DECID𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))))
 
Theorem19.40 1578 Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.40-2 1579 Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theoremexintrbi 1580 Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
 
Theoremexintr 1581 Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
 
Theoremalsyl 1582 Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))
 
Theoremhbex 1583 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)       (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theoremnfex 1584 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       𝑥𝑦𝜑
 
Theorem19.2 1585 Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
(∀𝑥𝜑 → ∃𝑦𝜑)
 
Theoremi19.24 1586 Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1571, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theoremi19.39 1587 Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1571, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.9ht 1588 A closed version of one direction of 19.9 1591. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorem19.9t 1589 A closed version of 19.9 1591. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorem19.9h 1590 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)
 
Theorem19.9 1591 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theoremalexim 1592 One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1566. (Contributed by Jim Kingdon, 2-Jul-2018.)
(∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)
 
Theoremexnalim 1593 One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theoremexanaliim 1594 A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))
 
Theoremalexnim 1595 A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)
 
Theoremax6blem 1596 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1597 compared to hbnt 1599. (Contributed by GD, 27-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremax6b 1597 Quantified Negation. Axiom C5-2 of [Monk2] p. 113.

(Contributed by GD, 27-Jan-2018.)

(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbn1 1598 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbnt 1599 Closed theorem version of bound-variable hypothesis builder hbn 1600. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremhbn 1600 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >