Detailed syntax breakdown of Axiom ax-iinf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | c0 3450 | 
. . . 4
class
∅ | 
| 2 |   | vx | 
. . . . 5
setvar 𝑥 | 
| 3 | 2 | cv 1363 | 
. . . 4
class 𝑥 | 
| 4 | 1, 3 | wcel 2167 | 
. . 3
wff ∅
∈ 𝑥 | 
| 5 |   | vy | 
. . . . . 6
setvar 𝑦 | 
| 6 | 5, 2 | wel 2168 | 
. . . . 5
wff 𝑦 ∈ 𝑥 | 
| 7 | 5 | cv 1363 | 
. . . . . . 7
class 𝑦 | 
| 8 | 7 | csuc 4400 | 
. . . . . 6
class suc 𝑦 | 
| 9 | 8, 3 | wcel 2167 | 
. . . . 5
wff suc 𝑦 ∈ 𝑥 | 
| 10 | 6, 9 | wi 4 | 
. . . 4
wff (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) | 
| 11 | 10, 5 | wal 1362 | 
. . 3
wff
∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) | 
| 12 | 4, 11 | wa 104 | 
. 2
wff (∅
∈ 𝑥 ∧
∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | 
| 13 | 12, 2 | wex 1506 | 
1
wff
∃𝑥(∅
∈ 𝑥 ∧
∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |