Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfinf2 | GIF version |
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
zfinf2 | ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-iinf 4572 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
2 | df-ral 2453 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | |
3 | 2 | anbi2i 454 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ (∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
4 | 3 | exbii 1598 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) ↔ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
5 | 1, 4 | mpbir 145 | 1 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∅c0 3414 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: omex 4577 |
Copyright terms: Public domain | W3C validator |