ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfinf2 GIF version

Theorem zfinf2 4635
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
zfinf2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem zfinf2
StepHypRef Expression
1 ax-iinf 4634 . 2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
2 df-ral 2488 . . . 4 (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
32anbi2i 457 . . 3 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)))
43exbii 1627 . 2 (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)))
51, 4mpbir 146 1 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370  wex 1514  wcel 2175  wral 2483  c0 3459  suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-ral 2488
This theorem is referenced by:  omex  4639
  Copyright terms: Public domain W3C validator