HomeHome Intuitionistic Logic Explorer
Theorem List (p. 47 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4601-4700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnpredlt 4601 The predecessor (see nnpredcl 4600) of a nonzero natural number is less than (see df-iord 4344) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
 
2.6.6  Relations
 
Syntaxcxp 4602 Extend the definition of a class to include the cross product.
class (𝐴 × 𝐵)
 
Syntaxccnv 4603 Extend the definition of a class to include the converse of a class.
class 𝐴
 
Syntaxcdm 4604 Extend the definition of a class to include the domain of a class.
class dom 𝐴
 
Syntaxcrn 4605 Extend the definition of a class to include the range of a class.
class ran 𝐴
 
Syntaxcres 4606 Extend the definition of a class to include the restriction of a class. (Read: The restriction of 𝐴 to 𝐵.)
class (𝐴𝐵)
 
Syntaxcima 4607 Extend the definition of a class to include the image of a class. (Read: The image of 𝐵 under 𝐴.)
class (𝐴𝐵)
 
Syntaxccom 4608 Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.)
class (𝐴𝐵)
 
Syntaxwrel 4609 Extend the definition of a wff to include the relation predicate. (Read: 𝐴 is a relation.)
wff Rel 𝐴
 
Definitiondf-xp 4610* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
 
Definitiondf-rel 4611 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5054 and dfrel3 5061. (Contributed by NM, 1-Aug-1994.)
(Rel 𝐴𝐴 ⊆ (V × V))
 
Definitiondf-cnv 4612* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴𝑅𝐵𝐵𝑅𝐴), as proven in brcnv 4787 (see df-br 3983 and df-rel 4611 for more on relations). For example, {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}.

We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.)

𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
 
Definitiondf-co 4613* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
 
Definitiondf-dm 4614* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 2 , 6 , 3 , 9 } dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4615). For alternate definitions see dfdm2 5138, dfdm3 4791, and dfdm4 4796. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
 
Definitiondf-rn 4615 Define the range of a class. For example, F = { 2 , 6 , 3 , 9 } -> ran F = { 6 , 9 } . Contrast with domain (defined in df-dm 4614). For alternate definitions, see dfrn2 4792, dfrn3 4793, and dfrn4 5064. The notation "ran " is used by Enderton; other authors sometimes use script R or script W. (Contributed by NM, 1-Aug-1994.)
ran 𝐴 = dom 𝐴
 
Definitiondf-res 4616 Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
 
Definitiondf-ima 4617 Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, ( F = { 2 , 6 , 3 , 9 } /\ B = { 1 , 2 } ) -> ( F B ) = { 6 } . Contrast with restriction (df-res 4616) and range (df-rn 4615). For an alternate definition, see dfima2 4948. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = ran (𝐴𝐵)
 
Theoremxpeq1 4618 Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
(𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2 4619 Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
(𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremelxpi 4620* Membership in a cross product. Uses fewer axioms than elxp 4621. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp 4621* Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp2 4622* Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremxpeq12 4623 Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremxpeq1i 4624 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐴 × 𝐶) = (𝐵 × 𝐶)
 
Theoremxpeq2i 4625 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐶 × 𝐴) = (𝐶 × 𝐵)
 
Theoremxpeq12i 4626 Equality inference for cross product. (Contributed by FL, 31-Aug-2009.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 × 𝐶) = (𝐵 × 𝐷)
 
Theoremxpeq1d 4627 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2d 4628 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremxpeq12d 4629 Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremsqxpeqd 4630 Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
 
Theoremnfxp 4631 Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴 × 𝐵)
 
Theorem0nelxp 4632 The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
¬ ∅ ∈ (𝐴 × 𝐵)
 
Theorem0nelelxp 4633 A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
(𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
 
Theoremopelxp 4634 Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
 
Theorembrxp 4635 Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
(𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
 
Theoremopelxpi 4636 Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.)
((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxpd 4637 Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxp1 4638 The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
 
Theoremopelxp2 4639 The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)
 
Theoremotelxp1 4640 The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)
 
Theoremrabxp 4641* Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
 
Theorembrrelex12 4642 A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembrrelex1 4643 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
 
Theorembrrelex 4644 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
 
Theorembrrelex2 4645 A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
 
Theorembrrelex12i 4646 Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.)
Rel 𝑅       (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembrrelex1i 4647 The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ V)
 
Theorembrrelex2i 4648 The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ V)
 
Theoremnprrel 4649 No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Rel 𝑅    &    ¬ 𝐴 ∈ V        ¬ 𝐴𝑅𝐵
 
Theorem0nelrel 4650 A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
(Rel 𝑅 → ∅ ∉ 𝑅)
 
Theoremfconstmpt 4651* Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
(𝐴 × {𝐵}) = (𝑥𝐴𝐵)
 
Theoremvtoclr 4652* Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremopelvvg 4653 Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
 
Theoremopelvv 4654 Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ (V × V)
 
Theoremopthprc 4655 Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
(((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theorembrel 4656 Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝑅 ⊆ (𝐶 × 𝐷)       (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
 
Theorembrab2a 4657* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremelxp3 4658* Membership in a cross product. (Contributed by NM, 5-Mar-1995.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
 
Theoremopeliunxp 4659 Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
(⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
 
Theoremxpundi 4660 Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
 
Theoremxpundir 4661 Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
 
Theoremxpiundi 4662* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
(𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
 
Theoremxpiundir 4663* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
( 𝑥𝐴 𝐵 × 𝐶) = 𝑥𝐴 (𝐵 × 𝐶)
 
Theoremiunxpconst 4664* Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 
Theoremxpun 4665 The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
 
Theoremelvv 4666* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremelvvv 4667* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
(𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremelvvuni 4668 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (V × V) → 𝐴𝐴)
 
Theoremmosubopt 4669* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
(∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
 
Theoremmosubop 4670* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
∃*𝑥𝜑       ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
 
Theorembrinxp2 4671 Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
 
Theorembrinxp 4672 Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
 
Theorempoinxp 4673 Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
 
Theoremsoinxp 4674 Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
 
Theoremseinxp 4675 Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
(𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
 
Theoremposng 4676 Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremsosng 4677 Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremopabssxp 4678* An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theorembrab2ga 4679* The law of concretion for a binary relation. See brab2a 4657 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremoptocl 4680* Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
𝐷 = (𝐵 × 𝐶)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝐷𝜓)
 
Theorem2optocl 4681* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐶 × 𝐷)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑅𝐵𝑅) → 𝜒)
 
Theorem3optocl 4682* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐷 × 𝐹)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)       ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
 
Theoremopbrop 4683* Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
(((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜓))
 
Theorem0xp 4684 The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
(∅ × 𝐴) = ∅
 
Theoremcsbxpg 4685 Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝐷𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 
Theoremreleq 4686 Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
 
Theoremreleqi 4687 Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
𝐴 = 𝐵       (Rel 𝐴 ↔ Rel 𝐵)
 
Theoremreleqd 4688 Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))
 
Theoremnfrel 4689 Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥Rel 𝐴
 
Theoremsbcrel 4690 Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
(𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))
 
Theoremrelss 4691 Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
(𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
 
Theoremssrel 4692* A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
 
Theoremeqrel 4693* Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
 
Theoremssrel2 4694* A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4692 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
(𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
 
Theoremrelssi 4695* Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
Rel 𝐴    &   (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)       𝐴𝐵
 
Theoremrelssdv 4696* Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
(𝜑 → Rel 𝐴)    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (𝜑𝐴𝐵)
 
Theoremeqrelriv 4697* Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
 
Theoremeqrelriiv 4698* Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Rel 𝐴    &   Rel 𝐵    &   (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       𝐴 = 𝐵
 
Theoremeqbrriv 4699* Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Rel 𝐴    &   Rel 𝐵    &   (𝑥𝐴𝑦𝑥𝐵𝑦)       𝐴 = 𝐵
 
Theoremeqrelrdv 4700* Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Rel 𝐴    &   Rel 𝐵    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (𝜑𝐴 = 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >