![]() |
Intuitionistic Logic Explorer Theorem List (p. 47 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | onnmin 4601 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.) |
⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
Theorem | ssnel 4602 | Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
Theorem | ordpwsucexmid 4603* | The subset in ordpwsucss 4600 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
⊢ ∀𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | ordtri2or2exmid 4604* | Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.) |
⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | ontri2orexmidim 4605* | Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4604. (Contributed by Jim Kingdon, 26-Aug-2024.) |
⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝜑) | ||
Theorem | onintexmid 4606* | If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
⊢ ((𝑦 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝑦) → ∩ 𝑦 ∈ 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | zfregfr 4607 | The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
⊢ E Fr 𝐴 | ||
Theorem | ordfr 4608 | Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.) |
⊢ (Ord 𝐴 → E Fr 𝐴) | ||
Theorem | ordwe 4609 | Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
⊢ (Ord 𝐴 → E We 𝐴) | ||
Theorem | wetriext 4610* | A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | wessep 4611 | A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
⊢ (( E We 𝐴 ∧ 𝐵 ⊆ 𝐴) → E We 𝐵) | ||
Theorem | reg3exmidlemwe 4612* | Lemma for reg3exmid 4613. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.) |
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} ⇒ ⊢ E We 𝐴 | ||
Theorem | reg3exmid 4613* | If any inhabited set satisfying df-wetr 4366 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.) |
⊢ (( E We 𝑧 ∧ ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | dcextest 4614* | If it is decidable whether {𝑥 ∣ 𝜑} is a set, then ¬ 𝜑 is decidable (where 𝑥 does not occur in 𝜑). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition ¬ 𝜑 is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.) |
⊢ DECID {𝑥 ∣ 𝜑} ∈ V ⇒ ⊢ DECID ¬ 𝜑 | ||
Theorem | tfi 4615* |
The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if 𝐴 is a class of ordinal
numbers with the property that every ordinal number included in 𝐴
also belongs to 𝐴, then every ordinal number is in
𝐴.
(Contributed by NM, 18-Feb-2004.) |
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) | ||
Theorem | tfis 4616* | Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
Theorem | tfis2f 4617* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
Theorem | tfis2 4618* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
Theorem | tfis3 4619* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜒) | ||
Theorem | tfisi 4620* | A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ On) & ⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
Axiom | ax-iinf 4621* | Axiom of Infinity. Axiom 5 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by Jim Kingdon, 16-Nov-2018.) |
⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | ||
Theorem | zfinf2 4622* | A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.) |
⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | ||
Syntax | com 4623 | Extend class notation to include the class of natural numbers. |
class ω | ||
Definition | df-iom 4624* |
Define the class of natural numbers as the smallest inductive set, which
is valid provided we assume the Axiom of Infinity. Definition 6.3 of
[Eisenberg] p. 82.
Note: the natural numbers ω are a subset of the ordinal numbers df-on 4400. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers (df-inn 8985) with analogous properties and operations, but they will be different sets. We are unable to use the terms finite ordinal and natural number interchangeably, as shown at exmidonfin 7256. (Contributed by NM, 6-Aug-1994.) Use its alias dfom3 4625 instead for naming consistency with set.mm. (New usage is discouraged.) |
⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | ||
Theorem | dfom3 4625* | Alias for df-iom 4624. Use it instead of df-iom 4624 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | ||
Theorem | omex 4626 | The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
⊢ ω ∈ V | ||
Theorem | peano1 4627 | Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
⊢ ∅ ∈ ω | ||
Theorem | peano2 4628 | The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
Theorem | peano3 4629 | The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) | ||
Theorem | peano4 4630 | Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | peano5 4631* | The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4636. (Contributed by NM, 18-Feb-2004.) |
⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
Theorem | find 4632* | The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ⇒ ⊢ 𝐴 = ω | ||
Theorem | finds 4633* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ω → 𝜏) | ||
Theorem | finds2 4634* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) ⇒ ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | ||
Theorem | finds1 4635* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
Theorem | findes 4636 | Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
Theorem | nn0suc 4637* | A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
Theorem | elomssom 4638 | A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4639. (Revised by BJ, 7-Aug-2024.) |
⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
Theorem | elnn 4639 | A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) | ||
Theorem | ordom 4640 | Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
⊢ Ord ω | ||
Theorem | omelon2 4641 | Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
⊢ (ω ∈ V → ω ∈ On) | ||
Theorem | omelon 4642 | Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
⊢ ω ∈ On | ||
Theorem | nnon 4643 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
Theorem | nnoni 4644 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
⊢ 𝐴 ∈ ω ⇒ ⊢ 𝐴 ∈ On | ||
Theorem | nnord 4645 | A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
Theorem | omsson 4646 | Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) |
⊢ ω ⊆ On | ||
Theorem | limom 4647 | Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
⊢ Lim ω | ||
Theorem | peano2b 4648 | A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | ||
Theorem | nnsuc 4649* | A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | ||
Theorem | nnsucpred 4650 | The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.) |
⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) | ||
Theorem | nndceq0 4651 | A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) | ||
Theorem | 0elnn 4652 | A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | ||
Theorem | nn0eln0 4653 | A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
Theorem | nnregexmid 4654* | If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4568 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6554 or nntri3or 6548), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.) |
⊢ ((𝑥 ⊆ ω ∧ ∃𝑦 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | omsinds 4655* | Strong (or "total") induction principle over ω. (Contributed by Scott Fenton, 17-Jul-2015.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
Theorem | nnpredcl 4656 | The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4597) but also holds when it is ∅ by uni0 3863. (Contributed by Jim Kingdon, 31-Jul-2022.) |
⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
Theorem | nnpredlt 4657 | The predecessor (see nnpredcl 4656) of a nonzero natural number is less than (see df-iord 4398) that number. (Contributed by Jim Kingdon, 14-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
Syntax | cxp 4658 | Extend the definition of a class to include the cross product. |
class (𝐴 × 𝐵) | ||
Syntax | ccnv 4659 | Extend the definition of a class to include the converse of a class. |
class ◡𝐴 | ||
Syntax | cdm 4660 | Extend the definition of a class to include the domain of a class. |
class dom 𝐴 | ||
Syntax | crn 4661 | Extend the definition of a class to include the range of a class. |
class ran 𝐴 | ||
Syntax | cres 4662 | Extend the definition of a class to include the restriction of a class. (Read: The restriction of 𝐴 to 𝐵.) |
class (𝐴 ↾ 𝐵) | ||
Syntax | cima 4663 | Extend the definition of a class to include the image of a class. (Read: The image of 𝐵 under 𝐴.) |
class (𝐴 “ 𝐵) | ||
Syntax | ccom 4664 | Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.) |
class (𝐴 ∘ 𝐵) | ||
Syntax | wrel 4665 | Extend the definition of a wff to include the relation predicate. (Read: 𝐴 is a relation.) |
wff Rel 𝐴 | ||
Definition | df-xp 4666* | Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
Definition | df-rel 4667 | Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5117 and dfrel3 5124. (Contributed by NM, 1-Aug-1994.) |
⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | ||
Definition | df-cnv 4668* |
Define the converse of a class. Definition 9.12 of [Quine] p. 64. The
converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈
V
and 𝐵 ∈ V then (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴), as proven in brcnv 4846
(see df-br 4031 and df-rel 4667 for more on relations). For example,
◡{〈2,
6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉}.
We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.) |
⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | ||
Definition | df-co 4669* | Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | ||
Definition | df-dm 4670* | Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 〈 2 , 6 〉, 〈 3 , 9 〉 } → dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4671). For alternate definitions see dfdm2 5201, dfdm3 4850, and dfdm4 4855. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.) |
⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | ||
Definition | df-rn 4671 | Define the range of a class. For example, F = { 〈 2 , 6 〉, 〈 3 , 9 〉 } -> ran F = { 6 , 9 } . Contrast with domain (defined in df-dm 4670). For alternate definitions, see dfrn2 4851, dfrn3 4852, and dfrn4 5127. The notation "ran " is used by Enderton; other authors sometimes use script R or script W. (Contributed by NM, 1-Aug-1994.) |
⊢ ran 𝐴 = dom ◡𝐴 | ||
Definition | df-res 4672 | Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | ||
Definition | df-ima 4673 | Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, ( F = { 〈 2 , 6 〉, 〈 3 , 9 〉 } /\ B = { 1 , 2 } ) -> ( F “ B ) = { 6 } . Contrast with restriction (df-res 4672) and range (df-rn 4671). For an alternate definition, see dfima2 5008. (Contributed by NM, 2-Aug-1994.) |
⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | ||
Theorem | xpeq1 4674 | Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | ||
Theorem | xpeq2 4675 | Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | ||
Theorem | elxpi 4676* | Membership in a cross product. Uses fewer axioms than elxp 4677. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | ||
Theorem | elxp 4677* | Membership in a cross product. (Contributed by NM, 4-Jul-1994.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | ||
Theorem | elxp2 4678* | Membership in a cross product. (Contributed by NM, 23-Feb-2004.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) | ||
Theorem | xpeq12 4679 | Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | ||
Theorem | xpeq1i 4680 | Equality inference for cross product. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) | ||
Theorem | xpeq2i 4681 | Equality inference for cross product. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) | ||
Theorem | xpeq12i 4682 | Equality inference for cross product. (Contributed by FL, 31-Aug-2009.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐷) | ||
Theorem | xpeq1d 4683 | Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | ||
Theorem | xpeq2d 4684 | Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | ||
Theorem | xpeq12d 4685 | Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷)) | ||
Theorem | sqxpeqd 4686 | Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) | ||
Theorem | nfxp 4687 | Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 × 𝐵) | ||
Theorem | 0nelxp 4688 | The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ¬ ∅ ∈ (𝐴 × 𝐵) | ||
Theorem | 0nelelxp 4689 | A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) |
⊢ (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶) | ||
Theorem | opelxp 4690 | Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | brxp 4691 | Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.) |
⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | ||
Theorem | opelxpi 4692 | Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | ||
Theorem | opelxpd 4693 | Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | ||
Theorem | opelxp1 4694 | The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐴 ∈ 𝐶) | ||
Theorem | opelxp2 4695 | The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) | ||
Theorem | otelxp1 4696 | The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) |
⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) | ||
Theorem | rabxp 4697* | Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.) |
⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓)} | ||
Theorem | brrelex12 4698 | A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | brrelex1 4699 | A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | ||
Theorem | brrelex 4700 | A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |