HomeHome Intuitionistic Logic Explorer
Theorem List (p. 47 of 129)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4601-4700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrelint 4601* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
(∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
 
Theoremrel0 4602 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Rel ∅
 
Theoremrelopabi 4603 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       Rel 𝐴
 
Theoremrelopab 4604 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremmptrel 4605 The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
Rel (𝑥𝐴𝐵)
 
Theoremreli 4606 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel I
 
Theoremrele 4607 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel E
 
Theoremopabid2 4608* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
(Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
 
Theoreminopab 4609* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
Theoremdifopab 4610* The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoreminxp 4611 The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
 
Theoremxpindi 4612 Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))
 
Theoremxpindir 4613 Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))
 
Theoremxpiindim 4614* Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
(∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
 
Theoremxpriindim 4615* Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
(∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
 
Theoremeliunxp 4616* Membership in a union of cross products. Analogue of elxp 4494 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
 
Theoremopeliunxp2 4617* Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = 𝐶𝐵 = 𝐸)       (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
 
Theoremraliunxp 4618* Write a double restricted quantification as one universal quantifier. In this version of ralxp 4620, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexiunxp 4619* Write a double restricted quantification as one universal quantifier. In this version of rexxp 4621, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremralxp 4620* Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxp 4621* Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremdjussxp 4622* Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
 
Theoremralxpf 4623* Version of ralxp 4620 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxpf 4624* Version of rexxp 4621 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremiunxpf 4625* Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
𝑦𝐶    &   𝑧𝐶    &   𝑥𝐷    &   (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)        𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
 
Theoremopabbi2dv 4626* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2218. (Contributed by NM, 24-Feb-2014.)
Rel 𝐴    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))       (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
 
Theoremrelop 4627* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V       (Rel ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))
 
Theoremideqg 4628 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
 
Theoremideq 4629 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
𝐵 ∈ V       (𝐴 I 𝐵𝐴 = 𝐵)
 
Theoremididg 4630 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝑉𝐴 I 𝐴)
 
Theoremissetid 4631 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 ∈ V ↔ 𝐴 I 𝐴)
 
Theoremcoss1 4632 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremcoss2 4633 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremcoeq1 4634 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2 4635 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq1i 4636 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremcoeq2i 4637 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremcoeq1d 4638 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2d 4639 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq12i 4640 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremcoeq12d 4641 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfco 4642 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremelco 4643* Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
(𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
 
Theorembrcog 4644* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
 
Theoremopelco2g 4645* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)))
 
Theorembrcogw 4646 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
(((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
 
Theoremeqbrrdva 4647* Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
(𝜑𝐴 ⊆ (𝐶 × 𝐷))    &   (𝜑𝐵 ⊆ (𝐶 × 𝐷))    &   ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theorembrco 4648* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
 
Theoremopelco 4649* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
 
Theoremcnvss 4650 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵𝐴𝐵)
 
Theoremcnveq 4651 Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
(𝐴 = 𝐵𝐴 = 𝐵)
 
Theoremcnveqi 4652 Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
𝐴 = 𝐵       𝐴 = 𝐵
 
Theoremcnveqd 4653 Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremelcnv 4654* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
(𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
 
Theoremelcnv2 4655* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
(𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
 
Theoremnfcnv 4656 Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥𝐴
 
Theoremopelcnvg 4657 Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
 
Theorembrcnvg 4658 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremopelcnv 4659 Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
 
Theorembrcnv 4660 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremcsbcnvg 4661 Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
(𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
 
Theoremcnvco 4662 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremcnvuni 4663* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremdfdm3 4664* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
 
Theoremdfrn2 4665* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
 
Theoremdfrn3 4666* Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
 
Theoremelrn2g 4667* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
 
Theoremelrng 4668* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
 
Theoremdfdm4 4669 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
dom 𝐴 = ran 𝐴
 
Theoremdfdmf 4670* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
 
Theoremcsbdmg 4671 Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
(𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)
 
Theoremeldmg 4672* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
 
Theoremeldm2g 4673* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
 
Theoremeldm 4674* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
𝐴 ∈ V       (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
 
Theoremeldm2 4675* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
𝐴 ∈ V       (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
 
Theoremdmss 4676 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
(𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
 
Theoremdmeq 4677 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
(𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
 
Theoremdmeqi 4678 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       dom 𝐴 = dom 𝐵
 
Theoremdmeqd 4679 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → dom 𝐴 = dom 𝐵)
 
Theoremopeldm 4680 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
 
Theorembreldm 4681 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theoremopeldmg 4682 Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
 
Theorembreldmg 4683 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremdmun 4684 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
 
Theoremdmin 4685 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
 
Theoremdmiun 4686 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
 
Theoremdmuni 4687* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
dom 𝐴 = 𝑥𝐴 dom 𝑥
 
Theoremdmopab 4688* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
 
Theoremdmopabss 4689* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
 
Theoremdmopab3 4690* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
(∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
 
Theoremdm0 4691 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom ∅ = ∅
 
Theoremdmi 4692 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom I = V
 
Theoremdmv 4693 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
dom V = V
 
Theoremdm0rn0 4694 An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4696. (Contributed by NM, 21-May-1998.)
(dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
 
Theoremreldm0 4695 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
 
Theoremdmmrnm 4696* A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
(∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
 
Theoremdmxpm 4697* The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
 
Theoremdmxpid 4698 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
dom (𝐴 × 𝐴) = 𝐴
 
Theoremdmxpin 4699 The domain of the intersection of two square Cartesian products. Unlike dmin 4685, equality holds. (Contributed by NM, 29-Jan-2008.)
dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵)
 
Theoremxpid11 4700 The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >