HomeHome Intuitionistic Logic Explorer
Theorem List (p. 47 of 144)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4601-4700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremomelon2 4601 Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.)
(ω ∈ V → ω ∈ On)
 
Theoremomelon 4602 Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.)
ω ∈ On
 
Theoremnnon 4603 A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
(𝐴 ∈ ω → 𝐴 ∈ On)
 
Theoremnnoni 4604 A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
𝐴 ∈ ω       𝐴 ∈ On
 
Theoremnnord 4605 A natural number is ordinal. (Contributed by NM, 17-Oct-1995.)
(𝐴 ∈ ω → Ord 𝐴)
 
Theoremomsson 4606 Omega is a subset of On. (Contributed by NM, 13-Jun-1994.)
ω ⊆ On
 
Theoremlimom 4607 Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Lim ω
 
Theorempeano2b 4608 A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
(𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
 
Theoremnnsuc 4609* A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
 
Theoremnnsucpred 4610 The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
 
Theoremnndceq0 4611 A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
(𝐴 ∈ ω → DECID 𝐴 = ∅)
 
Theorem0elnn 4612 A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
 
Theoremnn0eln0 4613 A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
(𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
 
Theoremnnregexmid 4614* If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4528 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6490 or nntri3or 6484), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.)
((𝑥 ⊆ ω ∧ ∃𝑦 𝑦𝑥) → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))       (𝜑 ∨ ¬ 𝜑)
 
Theoremomsinds 4615* Strong (or "total") induction principle over ω. (Contributed by Scott Fenton, 17-Jul-2015.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝐴 → (𝜑𝜒))    &   (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))       (𝐴 ∈ ω → 𝜒)
 
Theoremnnpredcl 4616 The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4557) but also holds when it is by uni0 3832. (Contributed by Jim Kingdon, 31-Jul-2022.)
(𝐴 ∈ ω → 𝐴 ∈ ω)
 
Theoremnnpredlt 4617 The predecessor (see nnpredcl 4616) of a nonzero natural number is less than (see df-iord 4360) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
 
2.6.6  Relations
 
Syntaxcxp 4618 Extend the definition of a class to include the cross product.
class (𝐴 × 𝐵)
 
Syntaxccnv 4619 Extend the definition of a class to include the converse of a class.
class 𝐴
 
Syntaxcdm 4620 Extend the definition of a class to include the domain of a class.
class dom 𝐴
 
Syntaxcrn 4621 Extend the definition of a class to include the range of a class.
class ran 𝐴
 
Syntaxcres 4622 Extend the definition of a class to include the restriction of a class. (Read: The restriction of 𝐴 to 𝐵.)
class (𝐴𝐵)
 
Syntaxcima 4623 Extend the definition of a class to include the image of a class. (Read: The image of 𝐵 under 𝐴.)
class (𝐴𝐵)
 
Syntaxccom 4624 Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.)
class (𝐴𝐵)
 
Syntaxwrel 4625 Extend the definition of a wff to include the relation predicate. (Read: 𝐴 is a relation.)
wff Rel 𝐴
 
Definitiondf-xp 4626* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example, ({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩}). Another example is that the set of rational numbers is defined using the Cartesian product as (ℤ × ℕ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
 
Definitiondf-rel 4627 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5071 and dfrel3 5078. (Contributed by NM, 1-Aug-1994.)
(Rel 𝐴𝐴 ⊆ (V × V))
 
Definitiondf-cnv 4628* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴𝑅𝐵𝐵𝑅𝐴), as proven in brcnv 4803 (see df-br 3999 and df-rel 4627 for more on relations). For example, {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}.

We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.)

𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
 
Definitiondf-co 4629* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
 
Definitiondf-dm 4630* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 2 , 6 , 3 , 9 } dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4631). For alternate definitions see dfdm2 5155, dfdm3 4807, and dfdm4 4812. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
 
Definitiondf-rn 4631 Define the range of a class. For example, F = { 2 , 6 , 3 , 9 } -> ran F = { 6 , 9 } . Contrast with domain (defined in df-dm 4630). For alternate definitions, see dfrn2 4808, dfrn3 4809, and dfrn4 5081. The notation "ran " is used by Enderton; other authors sometimes use script R or script W. (Contributed by NM, 1-Aug-1994.)
ran 𝐴 = dom 𝐴
 
Definitiondf-res 4632 Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
 
Definitiondf-ima 4633 Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, ( F = { 2 , 6 , 3 , 9 } /\ B = { 1 , 2 } ) -> ( F B ) = { 6 } . Contrast with restriction (df-res 4632) and range (df-rn 4631). For an alternate definition, see dfima2 4965. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵) = ran (𝐴𝐵)
 
Theoremxpeq1 4634 Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
(𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2 4635 Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
(𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremelxpi 4636* Membership in a cross product. Uses fewer axioms than elxp 4637. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp 4637* Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 
Theoremelxp2 4638* Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremxpeq12 4639 Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremxpeq1i 4640 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐴 × 𝐶) = (𝐵 × 𝐶)
 
Theoremxpeq2i 4641 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐶 × 𝐴) = (𝐶 × 𝐵)
 
Theoremxpeq12i 4642 Equality inference for cross product. (Contributed by FL, 31-Aug-2009.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 × 𝐶) = (𝐵 × 𝐷)
 
Theoremxpeq1d 4643 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
 
Theoremxpeq2d 4644 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
 
Theoremxpeq12d 4645 Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 
Theoremsqxpeqd 4646 Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
 
Theoremnfxp 4647 Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴 × 𝐵)
 
Theorem0nelxp 4648 The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
¬ ∅ ∈ (𝐴 × 𝐵)
 
Theorem0nelelxp 4649 A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
(𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
 
Theoremopelxp 4650 Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
 
Theorembrxp 4651 Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
(𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
 
Theoremopelxpi 4652 Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.)
((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxpd 4653 Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
 
Theoremopelxp1 4654 The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐴𝐶)
 
Theoremopelxp2 4655 The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)
 
Theoremotelxp1 4656 The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.)
(⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴𝑅)
 
Theoremrabxp 4657* Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
 
Theorembrrelex12 4658 A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembrrelex1 4659 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
 
Theorembrrelex 4660 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
 
Theorembrrelex2 4661 A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
 
Theorembrrelex12i 4662 Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.)
Rel 𝑅       (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembrrelex1i 4663 The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ V)
 
Theorembrrelex2i 4664 The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ V)
 
Theoremnprrel 4665 No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Rel 𝑅    &    ¬ 𝐴 ∈ V        ¬ 𝐴𝑅𝐵
 
Theorem0nelrel 4666 A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
(Rel 𝑅 → ∅ ∉ 𝑅)
 
Theoremfconstmpt 4667* Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
(𝐴 × {𝐵}) = (𝑥𝐴𝐵)
 
Theoremvtoclr 4668* Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Rel 𝑅    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremopelvvg 4669 Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
 
Theoremopelvv 4670 Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ ∈ (V × V)
 
Theoremopthprc 4671 Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
(((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 
Theorembrel 4672 Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝑅 ⊆ (𝐶 × 𝐷)       (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
 
Theorembrab2a 4673* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremelxp3 4674* Membership in a cross product. (Contributed by NM, 5-Mar-1995.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
 
Theoremopeliunxp 4675 Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
(⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
 
Theoremxpundi 4676 Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
 
Theoremxpundir 4677 Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
 
Theoremxpiundi 4678* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
(𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
 
Theoremxpiundir 4679* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
( 𝑥𝐴 𝐵 × 𝐶) = 𝑥𝐴 (𝐵 × 𝐶)
 
Theoremiunxpconst 4680* Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 
Theoremxpun 4681 The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
 
Theoremelvv 4682* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
(𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremelvvv 4683* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
(𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
 
Theoremelvvuni 4684 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (V × V) → 𝐴𝐴)
 
Theoremmosubopt 4685* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
(∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
 
Theoremmosubop 4686* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
∃*𝑥𝜑       ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
 
Theorembrinxp2 4687 Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴𝐶𝐵𝐷𝐴𝑅𝐵))
 
Theorembrinxp 4688 Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
 
Theorempoinxp 4689 Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
 
Theoremsoinxp 4690 Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
(𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
 
Theoremseinxp 4691 Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
(𝑅 Se 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Se 𝐴)
 
Theoremposng 4692 Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremsosng 4693 Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
((Rel 𝑅𝐴 ∈ V) → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 
Theoremopabssxp 4694* An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theorembrab2ga 4695* The law of concretion for a binary relation. See brab2a 4673 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}       (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 
Theoremoptocl 4696* Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
𝐷 = (𝐵 × 𝐶)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝐷𝜓)
 
Theorem2optocl 4697* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐶 × 𝐷)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑅𝐵𝑅) → 𝜒)
 
Theorem3optocl 4698* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
𝑅 = (𝐷 × 𝐹)    &   (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))    &   (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))    &   (⟨𝑣, 𝑢⟩ = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐹) ∧ (𝑧𝐷𝑤𝐹) ∧ (𝑣𝐷𝑢𝐹)) → 𝜑)       ((𝐴𝑅𝐵𝑅𝐶𝑅) → 𝜃)
 
Theoremopbrop 4699* Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
(((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → (𝜑𝜓))    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜓))
 
Theorem0xp 4700 The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
(∅ × 𝐴) = ∅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14388
  Copyright terms: Public domain < Previous  Next >