| Intuitionistic Logic Explorer Theorem List (p. 47 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | regexmidlemm 4601* | Lemma for regexmid 4604. 𝐴 is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} ⇒ ⊢ ∃𝑦 𝑦 ∈ 𝐴 | ||
| Theorem | regexmidlem1 4602* | Lemma for regexmid 4604. If 𝐴 has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} ⇒ ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) → (𝜑 ∨ ¬ 𝜑)) | ||
| Theorem | reg2exmidlema 4603* | Lemma for reg2exmid 4605. If 𝐴 has a minimal element (expressed by ⊆), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} ⇒ ⊢ (∃𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑢 ⊆ 𝑣 → (𝜑 ∨ ¬ 𝜑)) | ||
| Theorem | regexmid 4604* |
The axiom of foundation implies excluded middle.
By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by ∈). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4606. (Contributed by Jim Kingdon, 3-Sep-2019.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | reg2exmid 4605* | If any inhabited set has a minimal element (when expressed by ⊆), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.) |
| ⊢ ∀𝑧(∃𝑤 𝑤 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Axiom | ax-setind 4606* |
Axiom of ∈-Induction (also known as set
induction). An axiom of
Intuitionistic Zermelo-Fraenkel set theory. Axiom 9 of [Crosilla] p.
"Axioms of CZF and IZF". This replaces the Axiom of
Foundation (also
called Regularity) from Zermelo-Fraenkel set theory.
For more on axioms which might be adopted which are incompatible with this axiom (that is, Non-wellfounded Set Theory but in the absence of excluded middle), see Chapter 20 of [AczelRathjen], p. 183. (Contributed by Jim Kingdon, 19-Oct-2018.) |
| ⊢ (∀𝑎(∀𝑦 ∈ 𝑎 [𝑦 / 𝑎]𝜑 → 𝜑) → ∀𝑎𝜑) | ||
| Theorem | setindel 4607* | ∈-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.) |
| ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝑆 = V) | ||
| Theorem | setind 4608* | Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | ||
| Theorem | setind2 4609 | Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) | ||
| Theorem | elirr 4610 |
No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.
The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4606, we could redefine Ord 𝐴 (df-iord 4434) to also require E Fr 𝐴 (df-frind 4400) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4611 (which under that definition would presumably not need ax-setind 4606 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4611. To encourage ordirr 4611 when possible, we mark this theorem as discouraged. (Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.) |
| ⊢ ¬ 𝐴 ∈ 𝐴 | ||
| Theorem | ordirr 4611 | Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4606. If in the definition of ordinals df-iord 4434, we also required that membership be well-founded on any ordinal (see df-frind 4400), then we could prove ordirr 4611 without ax-setind 4606. (Contributed by NM, 2-Jan-1994.) |
| ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | onirri 4612 | An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ ¬ 𝐴 ∈ 𝐴 | ||
| Theorem | nordeq 4613 | A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ 𝐵) | ||
| Theorem | ordn2lp 4614 | An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
| Theorem | orddisj 4615 | An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | ||
| Theorem | orddif 4616 | Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
| ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | ||
| Theorem | elirrv 4617 | The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.) |
| ⊢ ¬ 𝑥 ∈ 𝑥 | ||
| Theorem | sucprcreg 4618 | A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.) |
| ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) | ||
| Theorem | ruv 4619 | The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
| Theorem | ruALT 4620 | Alternate proof of Russell's Paradox ru 3007, simplified using (indirectly) the Axiom of Set Induction ax-setind 4606. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
| Theorem | onprc 4621 | No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4555), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| ⊢ ¬ On ∈ V | ||
| Theorem | sucon 4622 | The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.) |
| ⊢ suc On = On | ||
| Theorem | en2lp 4623 | No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 27-Nov-2018.) |
| ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | ||
| Theorem | preleq 4624 | Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthreg 4625 | Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4606 (via the preleq 4624 step). See df-op 3655 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | suc11g 4626 | The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | suc11 4627 | The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | dtruex 4628* | At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4254 can also be summarized as "at least two sets exist", the difference is that dtruarb 4254 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | dtru 4629* | At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4628. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | eunex 4630 | Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | ||
| Theorem | ordsoexmid 4631 | Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
| ⊢ E Or On ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | ordsuc 4632 | The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.) |
| ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | ||
| Theorem | onsucuni2 4633 | A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪ 𝐴 = 𝐴) | ||
| Theorem | 0elsucexmid 4634* | If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.) |
| ⊢ ∀𝑥 ∈ On ∅ ∈ suc 𝑥 ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | nlimsucg 4635 | A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) | ||
| Theorem | ordpwsucss 4636 |
The collection of ordinals in the power class of an ordinal is a
superset of its successor.
We can think of (𝒫 𝐴 ∩ On) as another possible definition of successor, which would be equivalent to df-suc 4439 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if 𝐴 ∈ On then both ∪ suc 𝐴 = 𝐴 (onunisuci 4500) and ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴 (onuniss2 4581). Constructively (𝒫 𝐴 ∩ On) and suc 𝐴 cannot be shown to be equivalent (as proved at ordpwsucexmid 4639). (Contributed by Jim Kingdon, 21-Jul-2019.) |
| ⊢ (Ord 𝐴 → suc 𝐴 ⊆ (𝒫 𝐴 ∩ On)) | ||
| Theorem | onnmin 4637 | No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) | ||
| Theorem | ssnel 4638 | Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
| Theorem | ordpwsucexmid 4639* | The subset in ordpwsucss 4636 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
| ⊢ ∀𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | ordtri2or2exmid 4640* | Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.) |
| ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | ontri2orexmidim 4641* | Ordinal trichotomy implies excluded middle. Closed form of ordtri2or2exmid 4640. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → DECID 𝜑) | ||
| Theorem | onintexmid 4642* | If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
| ⊢ ((𝑦 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝑦) → ∩ 𝑦 ∈ 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | zfregfr 4643 | The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
| ⊢ E Fr 𝐴 | ||
| Theorem | ordfr 4644 | Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (Ord 𝐴 → E Fr 𝐴) | ||
| Theorem | ordwe 4645 | Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| ⊢ (Ord 𝐴 → E We 𝐴) | ||
| Theorem | wetriext 4646* | A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
| Theorem | wessep 4647 | A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
| ⊢ (( E We 𝐴 ∧ 𝐵 ⊆ 𝐴) → E We 𝐵) | ||
| Theorem | reg3exmidlemwe 4648* | Lemma for reg3exmid 4649. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} ⇒ ⊢ E We 𝐴 | ||
| Theorem | reg3exmid 4649* | If any inhabited set satisfying df-wetr 4402 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.) |
| ⊢ (( E We 𝑧 ∧ ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | dcextest 4650* | If it is decidable whether {𝑥 ∣ 𝜑} is a set, then ¬ 𝜑 is decidable (where 𝑥 does not occur in 𝜑). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition ¬ 𝜑 is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.) |
| ⊢ DECID {𝑥 ∣ 𝜑} ∈ V ⇒ ⊢ DECID ¬ 𝜑 | ||
| Theorem | tfi 4651* |
The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if 𝐴 is a class of ordinal
numbers with the property that every ordinal number included in 𝐴
also belongs to 𝐴, then every ordinal number is in
𝐴.
(Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) | ||
| Theorem | tfis 4652* | Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2f 4653* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2 4654* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis3 4655* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜒) | ||
| Theorem | tfisi 4656* | A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ On) & ⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Axiom | ax-iinf 4657* | Axiom of Infinity. Axiom 5 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by Jim Kingdon, 16-Nov-2018.) |
| ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) | ||
| Theorem | zfinf2 4658* | A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.) |
| ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | ||
| Syntax | com 4659 | Extend class notation to include the class of natural numbers. |
| class ω | ||
| Definition | df-iom 4660* |
Define the class of natural numbers as the smallest inductive set, which
is valid provided we assume the Axiom of Infinity. Definition 6.3 of
[Eisenberg] p. 82.
Note: the natural numbers ω are a subset of the ordinal numbers df-on 4436. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers (df-inn 9079) with analogous properties and operations, but they will be different sets. We are unable to use the terms finite ordinal and natural number interchangeably, as shown at exmidonfin 7340. (Contributed by NM, 6-Aug-1994.) Use its alias dfom3 4661 instead for naming consistency with set.mm. (New usage is discouraged.) |
| ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | ||
| Theorem | dfom3 4661* | Alias for df-iom 4660. Use it instead of df-iom 4660 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.) |
| ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | ||
| Theorem | omex 4662 | The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| ⊢ ω ∈ V | ||
| Theorem | peano1 4663 | Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| ⊢ ∅ ∈ ω | ||
| Theorem | peano2 4664 | The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
| Theorem | peano3 4665 | The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) | ||
| Theorem | peano4 4666 | Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | peano5 4667* | The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 4672. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
| Theorem | find 4668* | The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ⇒ ⊢ 𝐴 = ω | ||
| Theorem | finds 4669* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ω → 𝜏) | ||
| Theorem | finds2 4670* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) ⇒ ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | ||
| Theorem | finds1 4671* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
| Theorem | findes 4672 | Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| ⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
| Theorem | nn0suc 4673* | A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
| Theorem | elomssom 4674 | A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4675. (Revised by BJ, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
| Theorem | elnn 4675 | A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) | ||
| Theorem | ordom 4676 | Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| ⊢ Ord ω | ||
| Theorem | omelon2 4677 | Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| ⊢ (ω ∈ V → ω ∈ On) | ||
| Theorem | omelon 4678 | Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| ⊢ ω ∈ On | ||
| Theorem | nnon 4679 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
| Theorem | nnoni 4680 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| ⊢ 𝐴 ∈ ω ⇒ ⊢ 𝐴 ∈ On | ||
| Theorem | nnord 4681 | A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| ⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
| Theorem | omsson 4682 | Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) |
| ⊢ ω ⊆ On | ||
| Theorem | limom 4683 | Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| ⊢ Lim ω | ||
| Theorem | peano2b 4684 | A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | ||
| Theorem | nnsuc 4685* | A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | ||
| Theorem | nnsucpred 4686 | The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) | ||
| Theorem | nndceq0 4687 | A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.) |
| ⊢ (𝐴 ∈ ω → DECID 𝐴 = ∅) | ||
| Theorem | 0elnn 4688 | A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
| ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | ||
| Theorem | nn0eln0 4689 | A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | nnregexmid 4690* | If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4604 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6615 or nntri3or 6609), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.) |
| ⊢ ((𝑥 ⊆ ω ∧ ∃𝑦 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | omsinds 4691* | Strong (or "total") induction principle over ω. (Contributed by Scott Fenton, 17-Jul-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
| Theorem | nnpredcl 4692 | The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4633) but also holds when it is ∅ by uni0 3894. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
| Theorem | nnpredlt 4693 | The predecessor (see nnpredcl 4692) of a nonzero natural number is less than (see df-iord 4434) that number. (Contributed by Jim Kingdon, 14-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
| Syntax | cxp 4694 | Extend the definition of a class to include the cross product. |
| class (𝐴 × 𝐵) | ||
| Syntax | ccnv 4695 | Extend the definition of a class to include the converse of a class. |
| class ◡𝐴 | ||
| Syntax | cdm 4696 | Extend the definition of a class to include the domain of a class. |
| class dom 𝐴 | ||
| Syntax | crn 4697 | Extend the definition of a class to include the range of a class. |
| class ran 𝐴 | ||
| Syntax | cres 4698 | Extend the definition of a class to include the restriction of a class. (Read: The restriction of 𝐴 to 𝐵.) |
| class (𝐴 ↾ 𝐵) | ||
| Syntax | cima 4699 | Extend the definition of a class to include the image of a class. (Read: The image of 𝐵 under 𝐴.) |
| class (𝐴 “ 𝐵) | ||
| Syntax | ccom 4700 | Extend the definition of a class to include the composition of two classes. (Read: The composition of 𝐴 and 𝐵.) |
| class (𝐴 ∘ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |