| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-pre-ltirr | GIF version | ||
| Description: Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7991. (Contributed by Jim Kingdon, 12-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| ax-pre-ltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cr 7878 | . . 3 class ℝ | |
| 3 | 1, 2 | wcel 2167 | . 2 wff 𝐴 ∈ ℝ | 
| 4 | cltrr 7883 | . . . 4 class <ℝ | |
| 5 | 1, 1, 4 | wbr 4033 | . . 3 wff 𝐴 <ℝ 𝐴 | 
| 6 | 5 | wn 3 | . 2 wff ¬ 𝐴 <ℝ 𝐴 | 
| 7 | 3, 6 | wi 4 | 1 wff (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: axltirr 8093 | 
| Copyright terms: Public domain | W3C validator |