| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltirr | GIF version | ||
| Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 8119 with ordering on the extended reals. New proofs should use ltnr 8231 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltirr 8119 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | |
| 2 | ltxrlt 8220 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) | |
| 3 | 2 | anidms 397 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) |
| 4 | 1, 3 | mtbird 677 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 <ℝ cltrr 8011 < clt 8189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8191 df-mnf 8192 df-ltxr 8194 |
| This theorem is referenced by: ltnr 8231 |
| Copyright terms: Public domain | W3C validator |