![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axltirr | GIF version |
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7360 with ordering on the extended reals. New proofs should use ltnr 7465 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.) |
Ref | Expression |
---|---|
axltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-ltirr 7360 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | |
2 | ltxrlt 7455 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) | |
3 | 2 | anidms 389 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) |
4 | 1, 3 | mtbird 631 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∈ wcel 1434 class class class wbr 3811 ℝcr 7252 <ℝ cltrr 7257 < clt 7425 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-pre-ltirr 7360 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2614 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-xp 4407 df-pnf 7427 df-mnf 7428 df-ltxr 7430 |
This theorem is referenced by: ltnr 7465 |
Copyright terms: Public domain | W3C validator |