![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axltirr | GIF version |
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7922 with ordering on the extended reals. New proofs should use ltnr 8033 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.) |
Ref | Expression |
---|---|
axltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-ltirr 7922 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | |
2 | ltxrlt 8022 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) | |
3 | 2 | anidms 397 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐴 ↔ 𝐴 <ℝ 𝐴)) |
4 | 1, 3 | mtbird 673 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2148 class class class wbr 4003 ℝcr 7809 <ℝ cltrr 7814 < clt 7991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-pre-ltirr 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-xp 4632 df-pnf 7993 df-mnf 7994 df-ltxr 7996 |
This theorem is referenced by: ltnr 8033 |
Copyright terms: Public domain | W3C validator |