![]() |
Intuitionistic Logic Explorer Theorem List (p. 80 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dfcnqs 7901 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6654, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7878), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
⊢ ℂ = ((R × R) / ◡ E ) | ||
Theorem | addcnsrec 7902 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7901 and mulcnsrec 7903. (Contributed by NM, 13-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
Theorem | mulcnsrec 7903 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6653, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7901. (Contributed by NM, 13-Aug-1995.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
Theorem | addvalex 7904 | Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7997. (Contributed by Jim Kingdon, 14-Jul-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) | ||
Theorem | pitonnlem1 7905* | Lemma for pitonn 7908. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
⊢ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈1o, 1o〉] ~Q }, {𝑢 ∣ [〈1o, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 1 | ||
Theorem | pitonnlem1p1 7906 | Lemma for pitonn 7908. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.) |
⊢ (𝐴 ∈ P → [〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
Theorem | pitonnlem2 7907* | Lemma for pitonn 7908. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.) |
⊢ (𝐾 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 + 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈(𝐾 +N 1o), 1o〉] ~Q }, {𝑢 ∣ [〈(𝐾 +N 1o), 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | pitonn 7908* | Mapping from N to ℕ. (Contributed by Jim Kingdon, 22-Apr-2020.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | ||
Theorem | pitoregt0 7909* | Embedding from N to ℝ yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 0 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | pitore 7910* | Embedding from N to ℝ. Similar to pitonn 7908 but separate in the sense that we have not proved nnssre 8986 yet. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
Theorem | recnnre 7911* | Embedding the reciprocal of a natural number into ℝ. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
Theorem | peano1nnnn 7912* | One is an element of ℕ. This is a counterpart to 1nn 8993 designed for real number axioms which involve natural numbers (notably, axcaucvg 7960). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ 1 ∈ 𝑁 | ||
Theorem | peano2nnnn 7913* | A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8994 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7960). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) | ||
Theorem | ltrennb 7914* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 13-Jul-2021.) |
⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) | ||
Theorem | ltrenn 7915* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 12-Jul-2021.) |
⊢ (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | recidpipr 7916* | Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) | ||
Theorem | recidpirqlemcalc 7917 | Lemma for recidpirq 7918. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → (𝐴 ·P 𝐵) = 1P) ⇒ ⊢ (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P))) | ||
Theorem | recidpirq 7918* | A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ (𝑁 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 1) | ||
Theorem | axcnex 7919 | The complex numbers form a set. Use cnex 7996 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | axresscn 7920 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7964. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ ℝ ⊆ ℂ | ||
Theorem | ax1cn 7921 | 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7965. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
⊢ 1 ∈ ℂ | ||
Theorem | ax1re 7922 |
1 is a real number. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-1re 7966.
In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7965 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
⊢ 1 ∈ ℝ | ||
Theorem | axicn 7923 | i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7967. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
⊢ i ∈ ℂ | ||
Theorem | axaddcl 7924 | Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7968 be used later. Instead, in most cases use addcl 7997. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | axaddrcl 7925 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7969 be used later. Instead, in most cases use readdcl 7998. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | axmulcl 7926 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7970 be used later. Instead, in most cases use mulcl 7999. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | axmulrcl 7927 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7971 be used later. Instead, in most cases use remulcl 8000. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | axaddf 7928 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7924. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 7994. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Theorem | axmulf 7929 | Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 7926. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 7995. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | axaddcom 7930 |
Addition commutes. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly, nor should the proven axiom ax-addcom 7972 be used later.
Instead, use addcom 8156.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | axmulcom 7931 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7973 be used later. Instead, use mulcom 8001. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | axaddass 7932 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7974 be used later. Instead, use addass 8002. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | axmulass 7933 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7975. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | axdistr 7934 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7976 be used later. Instead, use adddi 8004. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | axi2m1 7935 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7977. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ ((i · i) + 1) = 0 | ||
Theorem | ax0lt1 7936 |
0 is less than 1. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-0lt1 7978.
The version of this axiom in the Metamath Proof Explorer reads 1 ≠ 0; here we change it to 0 <ℝ 1. The proof of 0 <ℝ 1 from 1 ≠ 0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ 0 <ℝ 1 | ||
Theorem | ax1rid 7937 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7979. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
Theorem | ax0id 7938 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 7980.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
Theorem | axrnegex 7939* | Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7981. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Theorem | axprecex 7940* |
Existence of positive reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 7982.
In treatments which assume excluded middle, the 0 <ℝ 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Theorem | axcnre 7941* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7983. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | axpre-ltirr 7942 | Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7984. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
Theorem | axpre-ltwlin 7943 | Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7985. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
Theorem | axpre-lttrn 7944 | Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7986. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Theorem | axpre-apti 7945 |
Apartness of reals is tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 7987.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
Theorem | axpre-ltadd 7946 | Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7988. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Theorem | axpre-mulgt0 7947 | The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7989. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Theorem | axpre-mulext 7948 |
Strong extensionality of multiplication (expressed in terms of
<ℝ). Axiom for real and
complex numbers, derived from set theory.
This construction-dependent theorem should not be referenced directly;
instead, use ax-pre-mulext 7990.
(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Theorem | rereceu 7949* | The reciprocal from axprecex 7940 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Theorem | recriota 7950* | Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.) |
⊢ (𝑁 ∈ N → (℩𝑟 ∈ ℝ (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 𝑟) = 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
Theorem | axarch 7951* |
Archimedean axiom. The Archimedean property is more naturally stated
once we have defined ℕ. Unless we find
another way to state it,
we'll just use the right hand side of dfnn2 8984 in stating what we mean by
"natural number" in the context of this axiom.
This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7991. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
Theorem | peano5nnnn 7952* | Peano's inductive postulate. This is a counterpart to peano5nni 8985 designed for real number axioms which involve natural numbers (notably, axcaucvg 7960). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ ((1 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) | ||
Theorem | nnindnn 7953* | Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8998 designed for real number axioms which involve natural numbers (notably, axcaucvg 7960). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ 𝑁 → 𝜏) | ||
Theorem | nntopi 7954* | Mapping from ℕ to N. (Contributed by Jim Kingdon, 13-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → ∃𝑧 ∈ N 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑧, 1o〉] ~Q }, {𝑢 ∣ [〈𝑧, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 𝐴) | ||
Theorem | axcaucvglemcl 7955* | Lemma for axcaucvg 7960. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) ∈ R) | ||
Theorem | axcaucvglemf 7956* | Lemma for axcaucvg 7960. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
Theorem | axcaucvglemval 7957* | Lemma for axcaucvg 7960. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈(𝐺‘𝐽), 0R〉) | ||
Theorem | axcaucvglemcau 7958* | Lemma for axcaucvg 7960. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
Theorem | axcaucvglemres 7959* | Lemma for axcaucvg 7960. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
Theorem | axcaucvg 7960* |
Real number completeness axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7992. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
Theorem | axpre-suploclemres 7961* | Lemma for axpre-suploc 7962. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 7869. (Contributed by Jim Kingdon, 24-Jan-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) & ⊢ 𝐵 = {𝑤 ∈ R ∣ 〈𝑤, 0R〉 ∈ 𝐴} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Theorem | axpre-suploc 7962* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7993. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Axiom | ax-cnex 7963 | The complex numbers form a set. Proofs should normally use cnex 7996 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
⊢ ℂ ∈ V | ||
Axiom | ax-resscn 7964 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7920. (Contributed by NM, 1-Mar-1995.) |
⊢ ℝ ⊆ ℂ | ||
Axiom | ax-1cn 7965 | 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7921. (Contributed by NM, 1-Mar-1995.) |
⊢ 1 ∈ ℂ | ||
Axiom | ax-1re 7966 | 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7922. Proofs should use 1re 8018 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
⊢ 1 ∈ ℝ | ||
Axiom | ax-icn 7967 | i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7923. (Contributed by NM, 1-Mar-1995.) |
⊢ i ∈ ℂ | ||
Axiom | ax-addcl 7968 | Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7924. Proofs should normally use addcl 7997 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Axiom | ax-addrcl 7969 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7925. Proofs should normally use readdcl 7998 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Axiom | ax-mulcl 7970 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7926. Proofs should normally use mulcl 7999 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Axiom | ax-mulrcl 7971 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7927. Proofs should normally use remulcl 8000 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Axiom | ax-addcom 7972 | Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7930. Proofs should normally use addcom 8156 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Axiom | ax-mulcom 7973 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7931. Proofs should normally use mulcom 8001 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Axiom | ax-addass 7974 | Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7932. Proofs should normally use addass 8002 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Axiom | ax-mulass 7975 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7933. Proofs should normally use mulass 8003 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Axiom | ax-distr 7976 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7934. Proofs should normally use adddi 8004 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Axiom | ax-i2m1 7977 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7935. (Contributed by NM, 29-Jan-1995.) |
⊢ ((i · i) + 1) = 0 | ||
Axiom | ax-0lt1 7978 | 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7936. Proofs should normally use 0lt1 8146 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.) |
⊢ 0 <ℝ 1 | ||
Axiom | ax-1rid 7979 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7937. (Contributed by NM, 29-Jan-1995.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
Axiom | ax-0id 7980 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, justified by Theorem ax0id 7938.
Proofs should normally use addrid 8157 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
Axiom | ax-rnegex 7981* | Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7939. (Contributed by Eric Schmidt, 21-May-2007.) |
⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Axiom | ax-precex 7982* | Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7940. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Axiom | ax-cnre 7983* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7941. For naming consistency, use cnre 8015 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Axiom | ax-pre-ltirr 7984 | Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7984. (Contributed by Jim Kingdon, 12-Jan-2020.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
Axiom | ax-pre-ltwlin 7985 | Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7943. (Contributed by Jim Kingdon, 12-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
Axiom | ax-pre-lttrn 7986 | Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7944. (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Axiom | ax-pre-apti 7987 | Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7945. (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
Axiom | ax-pre-ltadd 7988 | Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7946. (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Axiom | ax-pre-mulgt0 7989 | The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7947. (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Axiom | ax-pre-mulext 7990 |
Strong extensionality of multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 7948
(Contributed by Jim Kingdon, 18-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Axiom | ax-arch 7991* |
Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for
real and complex numbers, justified by Theorem axarch 7951.
This axiom should not be used directly; instead use arch 9237 (which is the same, but stated in terms of ℕ and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
Axiom | ax-caucvg 7992* |
Completeness. Axiom for real and complex numbers, justified by Theorem
axcaucvg 7960.
A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. This axiom should not be used directly; instead use caucvgre 11125 (which is the same, but stated in terms of the ℕ and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.) |
⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
Axiom | ax-pre-suploc 7993* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. Although this and ax-caucvg 7992 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7992. (Contributed by Jim Kingdon, 23-Jan-2024.) |
⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Axiom | ax-addf 7994 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 7997 should be used. Note that uses of ax-addf 7994 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 7928. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Axiom | ax-mulf 7995 |
Multiplication is an operation on the complex numbers. This deprecated
axiom is provided for historical compatibility but is not a bona fide
axiom for complex numbers (independent of set theory) since it cannot be
interpreted as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific ax-mulcl 7970 should be used. Note that uses of ax-mulf 7995
can be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 ·
𝑦)) in place of
·, from which
this axiom (with the defined operation in place of ·) follows as a
theorem.
This axiom is justified by Theorem axmulf 7929. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | cnex 7996 | Alias for ax-cnex 7963. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ℂ ∈ V | ||
Theorem | addcl 7997 | Alias for ax-addcl 7968, for naming consistency with addcli 8023. Use this theorem instead of ax-addcl 7968 or axaddcl 7924. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | readdcl 7998 | Alias for ax-addrcl 7969, for naming consistency with readdcli 8032. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | mulcl 7999 | Alias for ax-mulcl 7970, for naming consistency with mulcli 8024. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | remulcl 8000 | Alias for ax-mulrcl 7971, for naming consistency with remulcli 8033. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |