HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 113)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltnegcon1d 7901 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → -𝐴 < 𝐵)       (𝜑 → -𝐵 < 𝐴)
 
Theoremltnegcon2d 7902 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < -𝐵)       (𝜑𝐵 < -𝐴)
 
Theoremlenegcon1d 7903 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → -𝐴𝐵)       (𝜑 → -𝐵𝐴)
 
Theoremlenegcon2d 7904 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 ≤ -𝐵)       (𝜑𝐵 ≤ -𝐴)
 
Theoremltaddposd 7905 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremltaddpos2d 7906 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴𝐵 < (𝐴 + 𝐵)))
 
Theoremltsubposd 7907 Subtracting a positive number from another number decreases it. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < 𝐴 ↔ (𝐵𝐴) < 𝐵))
 
Theoremposdifd 7908 Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
 
Theoremaddge01d 7909 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
 
Theoremaddge02d 7910 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐵 + 𝐴)))
 
Theoremsubge0d 7911 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
 
Theoremsuble0d 7912 Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 0 ↔ 𝐴𝐵))
 
Theoremsubge02d 7913 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))
 
Theoremltadd1d 7914 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
 
Theoremleadd1d 7915 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴 + 𝐶) ≤ (𝐵 + 𝐶)))
 
Theoremleadd2d 7916 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)))
 
Theoremltsubaddd 7917 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
 
Theoremlesubaddd 7918 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
 
Theoremltsubadd2d 7919 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
 
Theoremlesubadd2d 7920 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶)))
 
Theoremltaddsubd 7921 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
 
Theoremltaddsub2d 7922 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
 
Theoremleaddsub2d 7923 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 + 𝐵) ≤ 𝐶𝐵 ≤ (𝐶𝐴)))
 
Theoremsubled 7924 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴𝐵) ≤ 𝐶)       (𝜑 → (𝐴𝐶) ≤ 𝐵)
 
Theoremlesubd 7925 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ≤ (𝐵𝐶))       (𝜑𝐶 ≤ (𝐵𝐴))
 
Theoremltsub23d 7926 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴𝐵) < 𝐶)       (𝜑 → (𝐴𝐶) < 𝐵)
 
Theoremltsub13d 7927 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < (𝐵𝐶))       (𝜑𝐶 < (𝐵𝐴))
 
Theoremlesub1d 7928 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐴𝐶) ≤ (𝐵𝐶)))
 
Theoremlesub2d 7929 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
 
Theoremltsub1d 7930 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝐶) < (𝐵𝐶)))
 
Theoremltsub2d 7931 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶𝐵) < (𝐶𝐴)))
 
Theoremltadd1dd 7932 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))
 
Theoremltsub1dd 7933 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴𝐶) < (𝐵𝐶))
 
Theoremltsub2dd 7934 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶𝐵) < (𝐶𝐴))
 
Theoremleadd1dd 7935 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
 
Theoremleadd2dd 7936 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))
 
Theoremlesub1dd 7937 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ≤ (𝐵𝐶))
 
Theoremlesub2dd 7938 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
 
Theoremle2addd 7939 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))
 
Theoremle2subd 7940 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴𝐷) ≤ (𝐶𝐵))
 
Theoremltleaddd 7941 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremleltaddd 7942 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2addd 7943 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷))
 
Theoremlt2subd 7944 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 < 𝐶)    &   (𝜑𝐵 < 𝐷)       (𝜑 → (𝐴𝐷) < (𝐶𝐵))
 
Theorempossumd 7945 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴))
 
Theoremsublt0d 7946 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
 
Theoremltaddsublt 7947 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴))
 
Theorem1le1 7948 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
1 ≤ 1
 
Theoremgt0add 7949 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))
 
3.3.5  Real Apartness
 
Syntaxcreap 7950 Class of real apartness relation.
class #
 
Definitiondf-reap 7951* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 7958 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 7963). (Contributed by Jim Kingdon, 26-Jan-2020.)
# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦𝑦 < 𝑥))}
 
Theoremreapval 7952 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 7964 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremreapirr 7953 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 7981 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)
 
Theoremrecexre 7954* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
 
Theoremreapti 7955 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 7998. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremrecexgt0 7956* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
3.3.6  Complex Apartness
 
Syntaxcap 7957 Class of complex apartness relation.
class #
 
Definitiondf-ap 7958* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8043 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 7981), symmetry (apsym 7982), and cotransitivity (apcotr 7983). Apartness implies negated equality, as seen at apne 7999, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 7998).

(Contributed by Jim Kingdon, 26-Jan-2020.)

# = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
 
Theoremixi 7959 i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(i · i) = -1
 
Theoreminelr 7960 The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.)
¬ i ∈ ℝ
 
Theoremrimul 7961 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)
 
Theoremrereim 7962 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴𝐶 = 0))
 
Theoremapreap 7963 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
 
Theoremreaplt 7964 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremreapltxor 7965 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theorem1ap0 7966 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
1 # 0
 
Theoremltmul1a 7967 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
 
Theoremltmul1 7968 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
 
Theoremlemul1 7969 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
 
Theoremreapmul1lem 7970 Lemma for reapmul1 7971. (Contributed by Jim Kingdon, 8-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
 
Theoremreapmul1 7971 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8152. (Contributed by Jim Kingdon, 8-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
 
Theoremreapadd1 7972 Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
 
Theoremreapneg 7973 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
 
Theoremreapcotr 7974 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
 
Theoremremulext1 7975 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵))
 
Theoremremulext2 7976 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵))
 
Theoremapsqgt0 7977 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
 
Theoremcru 7978 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremapreim 7979 Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulreim 7980 Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
 
Theoremapirr 7981 Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
(𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
 
Theoremapsym 7982 Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
 
Theoremapcotr 7983 Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
 
Theoremapadd1 7984 Addition respects apartness. Analogue of addcan 7564 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
 
Theoremapadd2 7985 Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵)))
 
Theoremaddext 7986 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5599. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremapneg 7987 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
 
Theoremmulext1 7988 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵))
 
Theoremmulext2 7989 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵))
 
Theoremmulext 7990 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5599. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulap0r 7991 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
 
Theoremmsqge0 7992 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
 
Theoremmsqge0i 7993 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ       0 ≤ (𝐴 · 𝐴)
 
Theoremmsqge0d 7994 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → 0 ≤ (𝐴 · 𝐴))
 
Theoremmulge0 7995 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0i 7996 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0d 7997 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremapti 7998 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremapne 7999 Apartness implies negated equality. We cannot in general prove the converse, which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐴𝐵))
 
Theoremleltap 8000 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵 # 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11237
  Copyright terms: Public domain < Previous  Next >