HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 141)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremc0ex 7901 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ∈ V
 
Theorem1ex 7902 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
1 ∈ V
 
Theoremcnre 7903* Alias for ax-cnre 7872, for naming consistency. (Contributed by NM, 3-Jan-2013.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremmulid1 7904 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
 
Theoremmulid2 7905 Identity law for multiplication. Note: see mulid1 7904 for commuted version. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
 
Theorem1re 7906 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
1 ∈ ℝ
 
Theorem0re 7907 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
0 ∈ ℝ
 
Theorem0red 7908 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 0 ∈ ℝ)
 
Theoremmulid1i 7909 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (𝐴 · 1) = 𝐴
 
Theoremmulid2i 7910 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (1 · 𝐴) = 𝐴
 
Theoremaddcli 7911 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) ∈ ℂ
 
Theoremmulcli 7912 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) ∈ ℂ
 
Theoremmulcomi 7913 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) = (𝐵 · 𝐴)
 
Theoremmulcomli 7914 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 · 𝐵) = 𝐶       (𝐵 · 𝐴) = 𝐶
 
Theoremaddassi 7915 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
 
Theoremmulassi 7916 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
 
Theoremadddii 7917 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
 
Theoremadddiri 7918 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
 
Theoremrecni 7919 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
𝐴 ∈ ℝ       𝐴 ∈ ℂ
 
Theoremreaddcli 7920 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 + 𝐵) ∈ ℝ
 
Theoremremulcli 7921 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 · 𝐵) ∈ ℝ
 
Theorem1red 7922 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℝ)
 
Theorem1cnd 7923 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℂ)
 
Theoremmulid1d 7924 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 1) = 𝐴)
 
Theoremmulid2d 7925 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1 · 𝐴) = 𝐴)
 
Theoremaddcld 7926 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremmulcld 7927 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremmulcomd 7928 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddassd 7929 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulassd 7930 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddid 7931 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremadddird 7932 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremadddirp1d 7933 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
 
Theoremjoinlmuladdmuld 7934 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)       (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
 
Theoremrecnd 7935 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℂ)
 
Theoremreaddcld 7936 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremremulcld 7937 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 7938 Plus infinity.
class +∞
 
Syntaxcmnf 7939 Minus infinity.
class -∞
 
Syntaxcxr 7940 The set of extended reals (includes plus and minus infinity).
class *
 
Syntaxclt 7941 'Less than' predicate (extended to include the extended reals).
class <
 
Syntaxcle 7942 Extend wff notation to include the 'less than or equal to' relation.
class
 
Definitiondf-pnf 7943 Define plus infinity. Note that the definition is arbitrary, requiring only that +∞ be a set not in and different from -∞ (df-mnf 7944). We use 𝒫 to make it independent of the construction of , and Cantor's Theorem will show that it is different from any member of and therefore . See pnfnre 7948 and mnfnre 7949, and we'll also be able to prove +∞ ≠ -∞.

A simpler possibility is to define +∞ as and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of . (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

+∞ = 𝒫
 
Definitiondf-mnf 7944 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in and different from +∞ (see mnfnre 7949). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
-∞ = 𝒫 +∞
 
Definitiondf-xr 7945 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
* = (ℝ ∪ {+∞, -∞})
 
Definitiondf-ltxr 7946* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, < is primitive and not necessarily a relation on . (Contributed by NM, 13-Oct-2005.)
< = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
 
Definitiondf-le 7947 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
≤ = ((ℝ* × ℝ*) ∖ < )
 
Theorempnfnre 7948 Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
+∞ ∉ ℝ
 
Theoremmnfnre 7949 Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
-∞ ∉ ℝ
 
Theoremressxr 7950 The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
ℝ ⊆ ℝ*
 
Theoremrexpssxrxp 7951 The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(ℝ × ℝ) ⊆ (ℝ* × ℝ*)
 
Theoremrexr 7952 A standard real is an extended real. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
 
Theorem0xr 7953 Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.)
0 ∈ ℝ*
 
Theoremrenepnf 7954 No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ +∞)
 
Theoremrenemnf 7955 No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ -∞)
 
Theoremrexrd 7956 A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℝ*)
 
Theoremrenepnfd 7957 No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ +∞)
 
Theoremrenemnfd 7958 No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ -∞)
 
Theorempnfxr 7959 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
+∞ ∈ ℝ*
 
Theorempnfex 7960 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
+∞ ∈ V
 
Theorempnfnemnf 7961 Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
+∞ ≠ -∞
 
Theoremmnfnepnf 7962 Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-∞ ≠ +∞
 
Theoremmnfxr 7963 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
-∞ ∈ ℝ*
 
Theoremrexri 7964 A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
𝐴 ∈ ℝ       𝐴 ∈ ℝ*
 
Theorem1xr 7965 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
1 ∈ ℝ*
 
Theoremrenfdisj 7966 The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(ℝ ∩ {+∞, -∞}) = ∅
 
Theoremltrelxr 7967 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
< ⊆ (ℝ* × ℝ*)
 
Theoremltrel 7968 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Rel <
 
Theoremlerelxr 7969 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
≤ ⊆ (ℝ* × ℝ*)
 
Theoremlerel 7970 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Rel ≤
 
Theoremxrlenlt 7971 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltxrlt 7972 The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
 
4.2.3  Restate the ordering postulates with extended real "less than"
 
Theoremaxltirr 7973 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7873 with ordering on the extended reals. New proofs should use ltnr 7983 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremaxltwlin 7974 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7874 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremaxlttrn 7975 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 7875 with ordering on the extended reals. New proofs should use lttr 7980 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremaxltadd 7976 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7877 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremaxapti 7977 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7876 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Theoremaxmulgt0 7978 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7878 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
Theoremaxsuploc 7979* An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7882 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
4.2.4  Ordering on reals
 
Theoremlttr 7980 Alias for axlttrn 7975, for naming consistency with lttri 8011. New proofs should generally use this instead of ax-pre-lttrn 7875. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremmulgt0 7981 The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
 
Theoremlenlt 7982 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltnr 7983 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremltso 7984 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
< Or ℝ
 
Theoremgtso 7985 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
< Or ℝ
 
Theoremlttri3 7986 Tightness of real apartness. (Contributed by NM, 5-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3 7987 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremltleletr 7988 Transitive law, weaker form of (𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶. (Contributed by AV, 14-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremletr 7989 Transitive law. (Contributed by NM, 12-Nov-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremleid 7990 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴𝐴)
 
Theoremltne 7991 'Less than' implies not equal. See also ltap 8539 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremltnsym 7992 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremeqlelt 7993 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
 
Theoremltle 7994 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremlelttr 7995 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremltletr 7996 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremltnsym2 7997 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremeqle 7998 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
 
Theoremltnri 7999 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℝ        ¬ 𝐴 < 𝐴
 
Theoremeqlei 8000 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐴 = 𝐵𝐴𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14073
  Copyright terms: Public domain < Previous  Next >