| Intuitionistic Logic Explorer Theorem List (p. 80 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | caucvgprprlemexbt 7901* | Lemma for caucvgprpr 7907. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑇 ∈ P) & ⊢ (𝜑 → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) | ||
| Theorem | caucvgprprlemexb 7902* | Lemma for caucvgprpr 7907. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝑅 ∈ N) ⇒ ⊢ (𝜑 → (((𝐿 +P 𝑄) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑅) +P 𝑄) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉))<P ((𝐹‘𝑅) +P 𝑄))) | ||
| Theorem | caucvgprprlemaddq 7903* | Lemma for caucvgprpr 7907. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → ∃𝑟 ∈ N (𝑋 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑟) +P 𝑄)) ⇒ ⊢ (𝜑 → 𝑋<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem1 7904* | Lemma for caucvgprpr 7907. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P 𝑄)) | ||
| Theorem | caucvgprprlem2 7905* | Lemma for caucvgprpr 7907. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P ((𝐹‘𝐾) +P 𝑄)) | ||
| Theorem | caucvgprprlemlim 7906* | Lemma for caucvgprpr 7907. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | caucvgprpr 7907* |
A Cauchy sequence of positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a given value 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This is similar to caucvgpr 7877 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7857) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
| ⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹‘𝑘) +P 𝑥)))) | ||
| Theorem | suplocexprlemell 7908* | Lemma for suplocexpr 7920. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) | ||
| Theorem | suplocexprlem2b 7909 | Lemma for suplocexpr 7920. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝐴 ⊆ P → (2nd ‘𝐵) = {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) | ||
| Theorem | suplocexprlemss 7910* | Lemma for suplocexpr 7920. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → 𝐴 ⊆ P) | ||
| Theorem | suplocexprlemml 7911* | Lemma for suplocexpr 7920. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ ∪ (1st “ 𝐴)) | ||
| Theorem | suplocexprlemrl 7912* | Lemma for suplocexpr 7920. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q (𝑞 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ ∪ (1st “ 𝐴)))) | ||
| Theorem | suplocexprlemmu 7913* | Lemma for suplocexpr 7920. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (2nd ‘𝐵)) | ||
| Theorem | suplocexprlemru 7914* | Lemma for suplocexpr 7920. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐵) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemdisj 7915* | Lemma for suplocexpr 7920. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ¬ (𝑞 ∈ ∪ (1st “ 𝐴) ∧ 𝑞 ∈ (2nd ‘𝐵))) | ||
| Theorem | suplocexprlemloc 7916* | Lemma for suplocexpr 7920. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑟 ∈ (2nd ‘𝐵)))) | ||
| Theorem | suplocexprlemex 7917* | Lemma for suplocexpr 7920. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → 𝐵 ∈ P) | ||
| Theorem | suplocexprlemub 7918* | Lemma for suplocexpr 7920. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ 𝐵<P 𝑦) | ||
| Theorem | suplocexprlemlub 7919* | Lemma for suplocexpr 7920. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) & ⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 ⇒ ⊢ (𝜑 → (𝑦<P 𝐵 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧)) | ||
| Theorem | suplocexpr 7920* | An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P 𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ P (∀𝑦 ∈ 𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦 ∈ P (𝑦<P 𝑥 → ∃𝑧 ∈ 𝐴 𝑦<P 𝑧))) | ||
| Definition | df-enr 7921* | Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | ||
| Definition | df-nr 7922 | Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
| ⊢ R = ((P × P) / ~R ) | ||
| Definition | df-plr 7923* | Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ +R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉] ~R ))} | ||
| Definition | df-mr 7924* | Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
| ⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | ||
| Definition | df-ltr 7925* | Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | ||
| Definition | df-0r 7926 | Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R = [〈1P, 1P〉] ~R | ||
| Definition | df-1r 7927 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
| Definition | df-m1r 7928 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
| Theorem | enrbreq 7929 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrer 7930 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| ⊢ ~R Er (P × P) | ||
| Theorem | enreceq 7931 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
| Theorem | enrex 7932 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ~R ∈ V | ||
| Theorem | ltrelsr 7933 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <R ⊆ (R × R) | ||
| Theorem | addcmpblnr 7934 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
| Theorem | mulcmpblnrlemg 7935 | Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))) | ||
| Theorem | mulcmpblnr 7936 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
| Theorem | prsrlem1 7937* | Decomposing signed reals into positive reals. Lemma for addsrpr 7940 and mulsrpr 7941. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
| Theorem | addsrmo 7938* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
| Theorem | mulsrmo 7939* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| ⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
| Theorem | addsrpr 7940 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
| Theorem | mulsrpr 7941 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
| Theorem | ltsrprg 7942 | Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))) | ||
| Theorem | gt0srpr 7943 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
| ⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
| Theorem | 0nsr 7944 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
| ⊢ ¬ ∅ ∈ R | ||
| Theorem | 0r 7945 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 0R ∈ R | ||
| Theorem | 1sr 7946 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 1R ∈ R | ||
| Theorem | m1r 7947 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
| ⊢ -1R ∈ R | ||
| Theorem | addclsr 7948 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
| Theorem | mulclsr 7949 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
| Theorem | addcomsrg 7950 | Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) | ||
| Theorem | addasssrg 7951 | Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) | ||
| Theorem | mulcomsrg 7952 | Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) | ||
| Theorem | mulasssrg 7953 | Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))) | ||
| Theorem | distrsrg 7954 | Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))) | ||
| Theorem | m1p1sr 7955 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
| ⊢ (-1R +R 1R) = 0R | ||
| Theorem | m1m1sr 7956 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) |
| ⊢ (-1R ·R -1R) = 1R | ||
| Theorem | lttrsr 7957* | Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | ||
| Theorem | ltposr 7958 | Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| ⊢ <R Po R | ||
| Theorem | ltsosr 7959 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
| ⊢ <R Or R | ||
| Theorem | 0lt1sr 7960 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ 0R <R 1R | ||
| Theorem | 1ne0sr 7961 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
| ⊢ ¬ 1R = 0R | ||
| Theorem | 0idsr 7962 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
| Theorem | 1idsr 7963 | 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
| Theorem | 00sr 7964 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
| Theorem | ltasrg 7965 | Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
| Theorem | pn0sr 7966 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
| Theorem | negexsr 7967* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
| Theorem | recexgt0sr 7968* | The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)) | ||
| Theorem | recexsrlem 7969* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) |
| ⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
| Theorem | addgt0sr 7970 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
| Theorem | ltadd1sr 7971 | Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ R → 𝐴 <R (𝐴 +R 1R)) | ||
| Theorem | ltm1sr 7972 | Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.) |
| ⊢ (𝐴 ∈ R → (𝐴 +R -1R) <R 𝐴) | ||
| Theorem | mulgt0sr 7973 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) |
| ⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
| Theorem | aptisr 7974 | Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) | ||
| Theorem | mulextsr1lem 7975 | Lemma for mulextsr1 7976. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| ⊢ (((𝑋 ∈ P ∧ 𝑌 ∈ P) ∧ (𝑍 ∈ P ∧ 𝑊 ∈ P) ∧ (𝑈 ∈ P ∧ 𝑉 ∈ P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))) | ||
| Theorem | mulextsr1 7976 | Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | ||
| Theorem | archsr 7977* | For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.) |
| ⊢ (𝐴 ∈ R → ∃𝑥 ∈ N 𝐴 <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | ||
| Theorem | srpospr 7978* | Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | ||
| Theorem | prsrcl 7979 | Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) | ||
| Theorem | prsrpos 7980 | Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
| Theorem | prsradd 7981 | Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → [〈((𝐴 +P 𝐵) +P 1P), 1P〉] ~R = ([〈(𝐴 +P 1P), 1P〉] ~R +R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
| Theorem | prsrlt 7982 | Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
| Theorem | prsrriota 7983* | Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) | ||
| Theorem | caucvgsrlemcl 7984* | Lemma for caucvgsr 7997. Terms of the sequence from caucvgsrlemgt1 7990 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | ||
| Theorem | caucvgsrlemasr 7985* | Lemma for caucvgsr 7997. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
| ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝐴 ∈ R) | ||
| Theorem | caucvgsrlemfv 7986* | Lemma for caucvgsr 7997. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → [〈((𝐺‘𝐴) +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | ||
| Theorem | caucvgsrlemf 7987* | Lemma for caucvgsr 7997. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → 𝐺:N⟶P) | ||
| Theorem | caucvgsrlemcau 7988* | Lemma for caucvgsr 7997. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
| Theorem | caucvgsrlembound 7989* | Lemma for caucvgsr 7997. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) | ||
| Theorem | caucvgsrlemgt1 7990* | Lemma for caucvgsr 7997. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) | ||
| Theorem | caucvgsrlemoffval 7991* | Lemma for caucvgsr 7997. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) | ||
| Theorem | caucvgsrlemofff 7992* | Lemma for caucvgsr 7997. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
| Theorem | caucvgsrlemoffcau 7993* | Lemma for caucvgsr 7997. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
| Theorem | caucvgsrlemoffgt1 7994* | Lemma for caucvgsr 7997. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) | ||
| Theorem | caucvgsrlemoffres 7995* | Lemma for caucvgsr 7997. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | caucvgsrlembnd 7996* | Lemma for caucvgsr 7997. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | caucvgsr 7997* |
A Cauchy sequence of signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7907 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7996). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7992). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7907 to get a limit (see caucvgsrlemgt1 7990). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7990). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7995). (Contributed by Jim Kingdon, 20-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
| Theorem | ltpsrprg 7998 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) | ||
| Theorem | mappsrprg 7999 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) | ||
| Theorem | map2psrprg 8000* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| ⊢ (𝐶 ∈ R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |