HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxpre-ltirr 7901 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7943. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
(𝐴 ∈ ℝ β†’ Β¬ 𝐴 <ℝ 𝐴)
 
Theoremaxpre-ltwlin 7902 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7944. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐴 <ℝ 𝐢 ∨ 𝐢 <ℝ 𝐡)))
 
Theoremaxpre-lttrn 7903 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7945. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 <ℝ 𝐡 ∧ 𝐡 <ℝ 𝐢) β†’ 𝐴 <ℝ 𝐢))
 
Theoremaxpre-apti 7904 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7946.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ Β¬ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)) β†’ 𝐴 = 𝐡)
 
Theoremaxpre-ltadd 7905 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7947. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐢 + 𝐴) <ℝ (𝐢 + 𝐡)))
 
Theoremaxpre-mulgt0 7906 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7948. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐡) β†’ 0 <ℝ (𝐴 Β· 𝐡)))
 
Theoremaxpre-mulext 7907 Strong extensionality of multiplication (expressed in terms of <ℝ). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7949.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 Β· 𝐢) <ℝ (𝐡 Β· 𝐢) β†’ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)))
 
Theoremrereceu 7908* The reciprocal from axprecex 7899 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) β†’ βˆƒ!π‘₯ ∈ ℝ (𝐴 Β· π‘₯) = 1)
 
Theoremrecriota 7909* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
(𝑁 ∈ N β†’ (β„©π‘Ÿ ∈ ℝ (⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩ Β· π‘Ÿ) = 1) = ⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q (*Qβ€˜[βŸ¨π‘, 1o⟩] ~Q )}, {𝑒 ∣ (*Qβ€˜[βŸ¨π‘, 1o⟩] ~Q ) <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theoremaxarch 7910* Archimedean axiom. The Archimedean property is more naturally stated once we have defined β„•. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8941 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7950. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ β†’ βˆƒπ‘› ∈ ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}𝐴 <ℝ 𝑛)
 
Theorempeano5nnnn 7911* Peano's inductive postulate. This is a counterpart to peano5nni 8942 designed for real number axioms which involve natural numbers (notably, axcaucvg 7919). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    β‡’   ((1 ∈ 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) β†’ 𝑁 βŠ† 𝐴)
 
Theoremnnindnn 7912* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8955 designed for real number axioms which involve natural numbers (notably, axcaucvg 7919). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (𝑧 = 1 β†’ (πœ‘ ↔ πœ“))    &   (𝑧 = π‘˜ β†’ (πœ‘ ↔ πœ’))    &   (𝑧 = (π‘˜ + 1) β†’ (πœ‘ ↔ πœƒ))    &   (𝑧 = 𝐴 β†’ (πœ‘ ↔ 𝜏))    &   πœ“    &   (π‘˜ ∈ 𝑁 β†’ (πœ’ β†’ πœƒ))    β‡’   (𝐴 ∈ 𝑁 β†’ 𝜏)
 
Theoremnntopi 7913* Mapping from β„• to N. (Contributed by Jim Kingdon, 13-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    β‡’   (𝐴 ∈ 𝑁 β†’ βˆƒπ‘§ ∈ N ⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘§, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘§, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
 
Theoremaxcaucvglemcl 7914* Lemma for axcaucvg 7919. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    β‡’   ((πœ‘ ∧ 𝐽 ∈ N) β†’ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑒 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩) ∈ R)
 
Theoremaxcaucvglemf 7915* Lemma for axcaucvg 7919. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    &   πΊ = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))    β‡’   (πœ‘ β†’ 𝐺:N⟢R)
 
Theoremaxcaucvglemval 7916* Lemma for axcaucvg 7919. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    &   πΊ = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))    β‡’   ((πœ‘ ∧ 𝐽 ∈ N) β†’ (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑒 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(πΊβ€˜π½), 0R⟩)
 
Theoremaxcaucvglemcau 7917* Lemma for axcaucvg 7919. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    &   πΊ = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))    β‡’   (πœ‘ β†’ βˆ€π‘› ∈ N βˆ€π‘˜ ∈ N (𝑛 <N π‘˜ β†’ ((πΊβ€˜π‘›) <R ((πΊβ€˜π‘˜) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Qβ€˜[βŸ¨π‘›, 1o⟩] ~Q )}, {𝑒 ∣ (*Qβ€˜[βŸ¨π‘›, 1o⟩] ~Q ) <Q 𝑒}⟩ +P 1P), 1P⟩] ~R ) ∧ (πΊβ€˜π‘˜) <R ((πΊβ€˜π‘›) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Qβ€˜[βŸ¨π‘›, 1o⟩] ~Q )}, {𝑒 ∣ (*Qβ€˜[βŸ¨π‘›, 1o⟩] ~Q ) <Q 𝑒}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremaxcaucvglemres 7918* Lemma for axcaucvg 7919. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    &   πΊ = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
 
Theoremaxcaucvg 7919* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for β„• or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of β„©.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7951. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
 
Theoremaxpre-suploclemres 7920* Lemma for axpre-suploc 7921. The result. The proof just needs to define 𝐡 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 7828. (Contributed by Jim Kingdon, 24-Jan-2024.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))    &   π΅ = {𝑀 ∈ R ∣ βŸ¨π‘€, 0R⟩ ∈ 𝐴}    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
Theoremaxpre-suploc 7921* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given π‘₯ < 𝑦, either there is an element of the set greater than π‘₯, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7952. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 7922 The complex numbers form a set. Proofs should normally use cnex 7955 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
β„‚ ∈ V
 
Axiomax-resscn 7923 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7879. (Contributed by NM, 1-Mar-1995.)
ℝ βŠ† β„‚
 
Axiomax-1cn 7924 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7880. (Contributed by NM, 1-Mar-1995.)
1 ∈ β„‚
 
Axiomax-1re 7925 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7881. Proofs should use 1re 7976 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
1 ∈ ℝ
 
Axiomax-icn 7926 i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7882. (Contributed by NM, 1-Mar-1995.)
i ∈ β„‚
 
Axiomax-addcl 7927 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7883. Proofs should normally use addcl 7956 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Axiomax-addrcl 7928 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7884. Proofs should normally use readdcl 7957 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Axiomax-mulcl 7929 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7885. Proofs should normally use mulcl 7958 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Axiomax-mulrcl 7930 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7886. Proofs should normally use remulcl 7959 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
 
Axiomax-addcom 7931 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7889. Proofs should normally use addcom 8114 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) = (𝐡 + 𝐴))
 
Axiomax-mulcom 7932 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7890. Proofs should normally use mulcom 7960 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Axiomax-addass 7933 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7891. Proofs should normally use addass 7961 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
 
Axiomax-mulass 7934 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7892. Proofs should normally use mulass 7962 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
 
Axiomax-distr 7935 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7893. Proofs should normally use adddi 7963 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
 
Axiomax-i2m1 7936 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7894. (Contributed by NM, 29-Jan-1995.)
((i Β· i) + 1) = 0
 
Axiomax-0lt1 7937 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7895. Proofs should normally use 0lt1 8104 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
0 <ℝ 1
 
Axiomax-1rid 7938 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7896. (Contributed by NM, 29-Jan-1995.)
(𝐴 ∈ ℝ β†’ (𝐴 Β· 1) = 𝐴)
 
Axiomax-0id 7939 0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 7897.

Proofs should normally use addrid 8115 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

(𝐴 ∈ β„‚ β†’ (𝐴 + 0) = 𝐴)
 
Axiomax-rnegex 7940* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7898. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ (𝐴 + π‘₯) = 0)
 
Axiomax-precex 7941* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7899. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) β†’ βˆƒπ‘₯ ∈ ℝ (0 <ℝ π‘₯ ∧ (𝐴 Β· π‘₯) = 1))
 
Axiomax-cnre 7942* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7900. For naming consistency, use cnre 7973 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
 
Axiomax-pre-ltirr 7943 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7943. (Contributed by Jim Kingdon, 12-Jan-2020.)
(𝐴 ∈ ℝ β†’ Β¬ 𝐴 <ℝ 𝐴)
 
Axiomax-pre-ltwlin 7944 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7902. (Contributed by Jim Kingdon, 12-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐴 <ℝ 𝐢 ∨ 𝐢 <ℝ 𝐡)))
 
Axiomax-pre-lttrn 7945 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7903. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 <ℝ 𝐡 ∧ 𝐡 <ℝ 𝐢) β†’ 𝐴 <ℝ 𝐢))
 
Axiomax-pre-apti 7946 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7904. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ Β¬ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)) β†’ 𝐴 = 𝐡)
 
Axiomax-pre-ltadd 7947 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7905. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐢 + 𝐴) <ℝ (𝐢 + 𝐡)))
 
Axiomax-pre-mulgt0 7948 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7906. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐡) β†’ 0 <ℝ (𝐴 Β· 𝐡)))
 
Axiomax-pre-mulext 7949 Strong extensionality of multiplication (expressed in terms of <ℝ). Axiom for real and complex numbers, justified by Theorem axpre-mulext 7907

(Contributed by Jim Kingdon, 18-Feb-2020.)

((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 Β· 𝐢) <ℝ (𝐡 Β· 𝐢) β†’ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)))
 
Axiomax-arch 7950* Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by Theorem axarch 7910.

This axiom should not be used directly; instead use arch 9193 (which is the same, but stated in terms of β„• and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ β†’ βˆƒπ‘› ∈ ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}𝐴 <ℝ 𝑛)
 
Axiomax-caucvg 7951* Completeness. Axiom for real and complex numbers, justified by Theorem axcaucvg 7919.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

This axiom should not be used directly; instead use caucvgre 11010 (which is the same, but stated in terms of the β„• and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
 
Axiomax-pre-suploc 7952* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given π‘₯ < 𝑦, either there is an element of the set greater than π‘₯, or 𝑦 is an upper bound.

Although this and ax-caucvg 7951 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7951.

(Contributed by Jim Kingdon, 23-Jan-2024.)

(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
Axiomax-addf 7953 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 7956 should be used. Note that uses of ax-addf 7953 can be eliminated by using the defined operation (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 7887. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

+ :(β„‚ Γ— β„‚)βŸΆβ„‚
 
Axiomax-mulf 7954 Multiplication is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific ax-mulcl 7929 should be used. Note that uses of ax-mulf 7954 can be eliminated by using the defined operation (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) in place of Β·, from which this axiom (with the defined operation in place of Β·) follows as a theorem.

This axiom is justified by Theorem axmulf 7888. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

Β· :(β„‚ Γ— β„‚)βŸΆβ„‚
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 7955 Alias for ax-cnex 7922. (Contributed by Mario Carneiro, 17-Nov-2014.)
β„‚ ∈ V
 
Theoremaddcl 7956 Alias for ax-addcl 7927, for naming consistency with addcli 7981. Use this theorem instead of ax-addcl 7927 or axaddcl 7883. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Theoremreaddcl 7957 Alias for ax-addrcl 7928, for naming consistency with readdcli 7990. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Theoremmulcl 7958 Alias for ax-mulcl 7929, for naming consistency with mulcli 7982. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Theoremremulcl 7959 Alias for ax-mulrcl 7930, for naming consistency with remulcli 7991. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
 
Theoremmulcom 7960 Alias for ax-mulcom 7932, for naming consistency with mulcomi 7983. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Theoremaddass 7961 Alias for ax-addass 7933, for naming consistency with addassi 7985. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
 
Theoremmulass 7962 Alias for ax-mulass 7934, for naming consistency with mulassi 7986. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
 
Theoremadddi 7963 Alias for ax-distr 7935, for naming consistency with adddii 7987. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
 
Theoremrecn 7964 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℝ β†’ 𝐴 ∈ β„‚)
 
Theoremreex 7965 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℝ ∈ V
 
Theoremreelprrecn 7966 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℝ ∈ {ℝ, β„‚}
 
Theoremcnelprrecn 7967 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
β„‚ ∈ {ℝ, β„‚}
 
Theoremadddir 7968 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) + (𝐡 Β· 𝐢)))
 
Theorem0cn 7969 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
0 ∈ β„‚
 
Theorem0cnd 7970 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
(πœ‘ β†’ 0 ∈ β„‚)
 
Theoremc0ex 7971 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ∈ V
 
Theorem1ex 7972 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
1 ∈ V
 
Theoremcnre 7973* Alias for ax-cnre 7942, for naming consistency. (Contributed by NM, 3-Jan-2013.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
 
Theoremmulrid 7974 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ β„‚ β†’ (𝐴 Β· 1) = 𝐴)
 
Theoremmullid 7975 Identity law for multiplication. Note: see mulrid 7974 for commuted version. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ β„‚ β†’ (1 Β· 𝐴) = 𝐴)
 
Theorem1re 7976 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
1 ∈ ℝ
 
Theorem0re 7977 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
0 ∈ ℝ
 
Theorem0red 7978 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 0 ∈ ℝ)
 
Theoremmulid1i 7979 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ β„‚    β‡’   (𝐴 Β· 1) = 𝐴
 
Theoremmullidi 7980 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ β„‚    β‡’   (1 Β· 𝐴) = 𝐴
 
Theoremaddcli 7981 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 + 𝐡) ∈ β„‚
 
Theoremmulcli 7982 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 Β· 𝐡) ∈ β„‚
 
Theoremmulcomi 7983 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴)
 
Theoremmulcomli 7984 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   (𝐴 Β· 𝐡) = 𝐢    β‡’   (𝐡 Β· 𝐴) = 𝐢
 
Theoremaddassi 7985 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢))
 
Theoremmulassi 7986 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢))
 
Theoremadddii 7987 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢))
 
Theoremadddiri 7988 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) + (𝐡 Β· 𝐢))
 
Theoremrecni 7989 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
𝐴 ∈ ℝ    β‡’   π΄ ∈ β„‚
 
Theoremreaddcli 7990 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   (𝐴 + 𝐡) ∈ ℝ
 
Theoremremulcli 7991 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   (𝐴 Β· 𝐡) ∈ ℝ
 
Theorem1red 7992 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 1 ∈ ℝ)
 
Theorem1cnd 7993 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 1 ∈ β„‚)
 
Theoremmulridd 7994 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 1) = 𝐴)
 
Theoremmullidd 7995 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (1 Β· 𝐴) = 𝐴)
 
Theoremmulid2d 7996 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (1 Β· 𝐴) = 𝐴)
 
Theoremaddcld 7997 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Theoremmulcld 7998 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Theoremmulcomd 7999 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Theoremaddassd 8000 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15237
  Copyright terms: Public domain < Previous  Next >