HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxcaucvg 7901* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for β„• or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of β„©.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7933. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
 
Theoremaxpre-suploclemres 7902* Lemma for axpre-suploc 7903. The result. The proof just needs to define 𝐡 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 7810. (Contributed by Jim Kingdon, 24-Jan-2024.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))    &   π΅ = {𝑀 ∈ R ∣ βŸ¨π‘€, 0R⟩ ∈ 𝐴}    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
Theoremaxpre-suploc 7903* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given π‘₯ < 𝑦, either there is an element of the set greater than π‘₯, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7934. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 7904 The complex numbers form a set. Proofs should normally use cnex 7937 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
β„‚ ∈ V
 
Axiomax-resscn 7905 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7861. (Contributed by NM, 1-Mar-1995.)
ℝ βŠ† β„‚
 
Axiomax-1cn 7906 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7862. (Contributed by NM, 1-Mar-1995.)
1 ∈ β„‚
 
Axiomax-1re 7907 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7863. Proofs should use 1re 7958 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
1 ∈ ℝ
 
Axiomax-icn 7908 i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7864. (Contributed by NM, 1-Mar-1995.)
i ∈ β„‚
 
Axiomax-addcl 7909 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7865. Proofs should normally use addcl 7938 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Axiomax-addrcl 7910 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7866. Proofs should normally use readdcl 7939 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Axiomax-mulcl 7911 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7867. Proofs should normally use mulcl 7940 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Axiomax-mulrcl 7912 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7868. Proofs should normally use remulcl 7941 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
 
Axiomax-addcom 7913 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7871. Proofs should normally use addcom 8096 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) = (𝐡 + 𝐴))
 
Axiomax-mulcom 7914 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7872. Proofs should normally use mulcom 7942 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Axiomax-addass 7915 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7873. Proofs should normally use addass 7943 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
 
Axiomax-mulass 7916 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7874. Proofs should normally use mulass 7944 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
 
Axiomax-distr 7917 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7875. Proofs should normally use adddi 7945 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
 
Axiomax-i2m1 7918 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7876. (Contributed by NM, 29-Jan-1995.)
((i Β· i) + 1) = 0
 
Axiomax-0lt1 7919 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7877. Proofs should normally use 0lt1 8086 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
0 <ℝ 1
 
Axiomax-1rid 7920 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7878. (Contributed by NM, 29-Jan-1995.)
(𝐴 ∈ ℝ β†’ (𝐴 Β· 1) = 𝐴)
 
Axiomax-0id 7921 0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 7879.

Proofs should normally use addid1 8097 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

(𝐴 ∈ β„‚ β†’ (𝐴 + 0) = 𝐴)
 
Axiomax-rnegex 7922* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7880. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ (𝐴 + π‘₯) = 0)
 
Axiomax-precex 7923* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7881. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) β†’ βˆƒπ‘₯ ∈ ℝ (0 <ℝ π‘₯ ∧ (𝐴 Β· π‘₯) = 1))
 
Axiomax-cnre 7924* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7882. For naming consistency, use cnre 7955 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
 
Axiomax-pre-ltirr 7925 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7925. (Contributed by Jim Kingdon, 12-Jan-2020.)
(𝐴 ∈ ℝ β†’ Β¬ 𝐴 <ℝ 𝐴)
 
Axiomax-pre-ltwlin 7926 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7884. (Contributed by Jim Kingdon, 12-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐴 <ℝ 𝐢 ∨ 𝐢 <ℝ 𝐡)))
 
Axiomax-pre-lttrn 7927 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7885. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 <ℝ 𝐡 ∧ 𝐡 <ℝ 𝐢) β†’ 𝐴 <ℝ 𝐢))
 
Axiomax-pre-apti 7928 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7886. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ Β¬ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)) β†’ 𝐴 = 𝐡)
 
Axiomax-pre-ltadd 7929 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7887. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 <ℝ 𝐡 β†’ (𝐢 + 𝐴) <ℝ (𝐢 + 𝐡)))
 
Axiomax-pre-mulgt0 7930 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7888. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐡) β†’ 0 <ℝ (𝐴 Β· 𝐡)))
 
Axiomax-pre-mulext 7931 Strong extensionality of multiplication (expressed in terms of <ℝ). Axiom for real and complex numbers, justified by Theorem axpre-mulext 7889

(Contributed by Jim Kingdon, 18-Feb-2020.)

((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 Β· 𝐢) <ℝ (𝐡 Β· 𝐢) β†’ (𝐴 <ℝ 𝐡 ∨ 𝐡 <ℝ 𝐴)))
 
Axiomax-arch 7932* Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by Theorem axarch 7892.

This axiom should not be used directly; instead use arch 9175 (which is the same, but stated in terms of β„• and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ β†’ βˆƒπ‘› ∈ ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}𝐴 <ℝ 𝑛)
 
Axiomax-caucvg 7933* Completeness. Axiom for real and complex numbers, justified by Theorem axcaucvg 7901.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

This axiom should not be used directly; instead use caucvgre 10992 (which is the same, but stated in terms of the β„• and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}    &   (πœ‘ β†’ 𝐹:π‘βŸΆβ„)    &   (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
 
Axiomax-pre-suploc 7934* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given π‘₯ < 𝑦, either there is an element of the set greater than π‘₯, or 𝑦 is an upper bound.

Although this and ax-caucvg 7933 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7933.

(Contributed by Jim Kingdon, 23-Jan-2024.)

(((𝐴 βŠ† ℝ ∧ βˆƒπ‘₯ π‘₯ ∈ 𝐴) ∧ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 <ℝ π‘₯ ∧ βˆ€π‘₯ ∈ ℝ βˆ€π‘¦ ∈ ℝ (π‘₯ <ℝ 𝑦 β†’ (βˆƒπ‘§ ∈ 𝐴 π‘₯ <ℝ 𝑧 ∨ βˆ€π‘§ ∈ 𝐴 𝑧 <ℝ 𝑦)))) β†’ βˆƒπ‘₯ ∈ ℝ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ <ℝ 𝑦 ∧ βˆ€π‘¦ ∈ ℝ (𝑦 <ℝ π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦 <ℝ 𝑧)))
 
Axiomax-addf 7935 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 7938 should be used. Note that uses of ax-addf 7935 can be eliminated by using the defined operation (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 7869. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

+ :(β„‚ Γ— β„‚)βŸΆβ„‚
 
Axiomax-mulf 7936 Multiplication is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific ax-mulcl 7911 should be used. Note that uses of ax-mulf 7936 can be eliminated by using the defined operation (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) in place of Β·, from which this axiom (with the defined operation in place of Β·) follows as a theorem.

This axiom is justified by Theorem axmulf 7870. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

Β· :(β„‚ Γ— β„‚)βŸΆβ„‚
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 7937 Alias for ax-cnex 7904. (Contributed by Mario Carneiro, 17-Nov-2014.)
β„‚ ∈ V
 
Theoremaddcl 7938 Alias for ax-addcl 7909, for naming consistency with addcli 7963. Use this theorem instead of ax-addcl 7909 or axaddcl 7865. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Theoremreaddcl 7939 Alias for ax-addrcl 7910, for naming consistency with readdcli 7972. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Theoremmulcl 7940 Alias for ax-mulcl 7911, for naming consistency with mulcli 7964. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Theoremremulcl 7941 Alias for ax-mulrcl 7912, for naming consistency with remulcli 7973. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 Β· 𝐡) ∈ ℝ)
 
Theoremmulcom 7942 Alias for ax-mulcom 7914, for naming consistency with mulcomi 7965. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Theoremaddass 7943 Alias for ax-addass 7915, for naming consistency with addassi 7967. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
 
Theoremmulass 7944 Alias for ax-mulass 7916, for naming consistency with mulassi 7968. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
 
Theoremadddi 7945 Alias for ax-distr 7917, for naming consistency with adddii 7969. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
 
Theoremrecn 7946 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℝ β†’ 𝐴 ∈ β„‚)
 
Theoremreex 7947 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℝ ∈ V
 
Theoremreelprrecn 7948 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℝ ∈ {ℝ, β„‚}
 
Theoremcnelprrecn 7949 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
β„‚ ∈ {ℝ, β„‚}
 
Theoremadddir 7950 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ ((𝐴 + 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) + (𝐡 Β· 𝐢)))
 
Theorem0cn 7951 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
0 ∈ β„‚
 
Theorem0cnd 7952 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
(πœ‘ β†’ 0 ∈ β„‚)
 
Theoremc0ex 7953 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ∈ V
 
Theorem1ex 7954 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
1 ∈ V
 
Theoremcnre 7955* Alias for ax-cnre 7924, for naming consistency. (Contributed by NM, 3-Jan-2013.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘¦ ∈ ℝ 𝐴 = (π‘₯ + (i Β· 𝑦)))
 
Theoremmulrid 7956 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ β„‚ β†’ (𝐴 Β· 1) = 𝐴)
 
Theoremmullid 7957 Identity law for multiplication. Note: see mulrid 7956 for commuted version. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ β„‚ β†’ (1 Β· 𝐴) = 𝐴)
 
Theorem1re 7958 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
1 ∈ ℝ
 
Theorem0re 7959 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
0 ∈ ℝ
 
Theorem0red 7960 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 0 ∈ ℝ)
 
Theoremmulid1i 7961 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ β„‚    β‡’   (𝐴 Β· 1) = 𝐴
 
Theoremmullidi 7962 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ β„‚    β‡’   (1 Β· 𝐴) = 𝐴
 
Theoremaddcli 7963 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 + 𝐡) ∈ β„‚
 
Theoremmulcli 7964 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 Β· 𝐡) ∈ β„‚
 
Theoremmulcomi 7965 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴)
 
Theoremmulcomli 7966 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   (𝐴 Β· 𝐡) = 𝐢    β‡’   (𝐡 Β· 𝐴) = 𝐢
 
Theoremaddassi 7967 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢))
 
Theoremmulassi 7968 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢))
 
Theoremadddii 7969 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢))
 
Theoremadddiri 7970 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   ((𝐴 + 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) + (𝐡 Β· 𝐢))
 
Theoremrecni 7971 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
𝐴 ∈ ℝ    β‡’   π΄ ∈ β„‚
 
Theoremreaddcli 7972 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   (𝐴 + 𝐡) ∈ ℝ
 
Theoremremulcli 7973 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   (𝐴 Β· 𝐡) ∈ ℝ
 
Theorem1red 7974 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 1 ∈ ℝ)
 
Theorem1cnd 7975 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 1 ∈ β„‚)
 
Theoremmulridd 7976 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 1) = 𝐴)
 
Theoremmullidd 7977 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (1 Β· 𝐴) = 𝐴)
 
Theoremmulid2d 7978 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (1 Β· 𝐴) = 𝐴)
 
Theoremaddcld 7979 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ∈ β„‚)
 
Theoremmulcld 7980 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) ∈ β„‚)
 
Theoremmulcomd 7981 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
 
Theoremaddassd 7982 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + 𝐢) = (𝐴 + (𝐡 + 𝐢)))
 
Theoremmulassd 7983 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 Β· 𝐡) Β· 𝐢) = (𝐴 Β· (𝐡 Β· 𝐢)))
 
Theoremadddid 7984 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ (𝐴 Β· (𝐡 + 𝐢)) = ((𝐴 Β· 𝐡) + (𝐴 Β· 𝐢)))
 
Theoremadddird 7985 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) Β· 𝐢) = ((𝐴 Β· 𝐢) + (𝐡 Β· 𝐢)))
 
Theoremadddirp1d 7986 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 1) Β· 𝐡) = ((𝐴 Β· 𝐡) + 𝐡))
 
Theoremjoinlmuladdmuld 7987 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ ((𝐴 Β· 𝐡) + (𝐢 Β· 𝐡)) = 𝐷)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐢) Β· 𝐡) = 𝐷)
 
Theoremrecnd 7988 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    β‡’   (πœ‘ β†’ 𝐴 ∈ β„‚)
 
Theoremreaddcld 7989 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Theoremremulcld 7990 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) ∈ ℝ)
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 7991 Plus infinity.
class +∞
 
Syntaxcmnf 7992 Minus infinity.
class -∞
 
Syntaxcxr 7993 The set of extended reals (includes plus and minus infinity).
class ℝ*
 
Syntaxclt 7994 'Less than' predicate (extended to include the extended reals).
class <
 
Syntaxcle 7995 Extend wff notation to include the 'less than or equal to' relation.
class ≀
 
Definitiondf-pnf 7996 Define plus infinity. Note that the definition is arbitrary, requiring only that +∞ be a set not in ℝ and different from -∞ (df-mnf 7997). We use 𝒫 βˆͺ β„‚ to make it independent of the construction of β„‚, and Cantor's Theorem will show that it is different from any member of β„‚ and therefore ℝ. See pnfnre 8001 and mnfnre 8002, and we'll also be able to prove +∞ β‰  -∞.

A simpler possibility is to define +∞ as β„‚ and -∞ as {β„‚}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

+∞ = 𝒫 βˆͺ β„‚
 
Definitiondf-mnf 7997 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 8002). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
-∞ = 𝒫 +∞
 
Definitiondf-xr 7998 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
ℝ* = (ℝ βˆͺ {+∞, -∞})
 
Definitiondf-ltxr 7999* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.)
< = ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ π‘₯ <ℝ 𝑦)} βˆͺ (((ℝ βˆͺ {-∞}) Γ— {+∞}) βˆͺ ({-∞} Γ— ℝ)))
 
Definitiondf-le 8000 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
≀ = ((ℝ* Γ— ℝ*) βˆ– β—‘ < )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14871
  Copyright terms: Public domain < Previous  Next >