| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-pre-lttrn | GIF version | ||
| Description: Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7968. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| ax-pre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 7895 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℝ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℝ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2167 | . . 3 wff 𝐶 ∈ ℝ |
| 8 | 3, 5, 7 | w3a 980 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) |
| 9 | cltrr 7900 | . . . . 5 class <ℝ | |
| 10 | 1, 4, 9 | wbr 4034 | . . . 4 wff 𝐴 <ℝ 𝐵 |
| 11 | 4, 6, 9 | wbr 4034 | . . . 4 wff 𝐵 <ℝ 𝐶 |
| 12 | 10, 11 | wa 104 | . . 3 wff (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) |
| 13 | 1, 6, 9 | wbr 4034 | . . 3 wff 𝐴 <ℝ 𝐶 |
| 14 | 12, 13 | wi 4 | . 2 wff ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Colors of variables: wff set class |
| This axiom is referenced by: axlttrn 8112 |
| Copyright terms: Public domain | W3C validator |