ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-pre-lttrn Unicode version

Axiom ax-pre-lttrn 7867
Description: Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7825. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
ax-pre-lttrn  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )

Detailed syntax breakdown of Axiom ax-pre-lttrn
StepHypRef Expression
1 cA . . . 4  class  A
2 cr 7752 . . . 4  class  RR
31, 2wcel 2136 . . 3  wff  A  e.  RR
4 cB . . . 4  class  B
54, 2wcel 2136 . . 3  wff  B  e.  RR
6 cC . . . 4  class  C
76, 2wcel 2136 . . 3  wff  C  e.  RR
83, 5, 7w3a 968 . 2  wff  ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )
9 cltrr 7757 . . . . 5  class  <RR
101, 4, 9wbr 3982 . . . 4  wff  A  <RR  B
114, 6, 9wbr 3982 . . . 4  wff  B  <RR  C
1210, 11wa 103 . . 3  wff  ( A 
<RR  B  /\  B  <RR  C )
131, 6, 9wbr 3982 . . 3  wff  A  <RR  C
1412, 13wi 4 . 2  wff  ( ( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C )
158, 14wi 4 1  wff  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
Colors of variables: wff set class
This axiom is referenced by:  axlttrn  7967
  Copyright terms: Public domain W3C validator