| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-lttrn | GIF version | ||
| Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 8021. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7923 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7923 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | elreal 7923 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
| 4 | breq1 4046 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 5 | 4 | anbi1d 465 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉))) |
| 6 | breq1 4046 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
| 7 | 5, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 8 | breq2 4047 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 9 | breq1 4046 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 〈𝑧, 0R〉)) | |
| 10 | 8, 9 | anbi12d 473 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉))) |
| 11 | 10 | imbi1d 231 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 12 | breq2 4047 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐵 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 𝐶)) | |
| 13 | 12 | anbi2d 464 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
| 14 | breq2 4047 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
| 15 | 13, 14 | imbi12d 234 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
| 16 | ltresr 7934 | . . . . 5 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 17 | ltresr 7934 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑦 <R 𝑧) | |
| 18 | ltsosr 7859 | . . . . . 6 ⊢ <R Or R | |
| 19 | ltrelsr 7833 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 20 | 18, 19 | sotri 5075 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
| 21 | 16, 17, 20 | syl2anb 291 | . . . 4 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝑥 <R 𝑧) |
| 22 | ltresr 7934 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
| 23 | 21, 22 | sylibr 134 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) |
| 24 | 23 | a1i 9 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉)) |
| 25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 2805 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 Rcnr 7392 0Rc0r 7393 <R cltr 7398 ℝcr 7906 <ℝ cltrr 7911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-2o 6493 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 df-enq0 7519 df-nq0 7520 df-0nq0 7521 df-plq0 7522 df-mq0 7523 df-inp 7561 df-i1p 7562 df-iplp 7563 df-iltp 7565 df-enr 7821 df-nr 7822 df-ltr 7825 df-0r 7826 df-r 7917 df-lt 7920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |