| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-lttrn | GIF version | ||
| Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 8059. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7961 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 7961 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | elreal 7961 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
| 4 | breq1 4054 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 5 | 4 | anbi1d 465 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉))) |
| 6 | breq1 4054 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
| 7 | 5, 6 | imbi12d 234 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 8 | breq2 4055 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 9 | breq1 4054 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 〈𝑧, 0R〉)) | |
| 10 | 8, 9 | anbi12d 473 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉))) |
| 11 | 10 | imbi1d 231 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 12 | breq2 4055 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐵 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 𝐶)) | |
| 13 | 12 | anbi2d 464 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
| 14 | breq2 4055 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
| 15 | 13, 14 | imbi12d 234 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
| 16 | ltresr 7972 | . . . . 5 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 17 | ltresr 7972 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑦 <R 𝑧) | |
| 18 | ltsosr 7897 | . . . . . 6 ⊢ <R Or R | |
| 19 | ltrelsr 7871 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 20 | 18, 19 | sotri 5087 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
| 21 | 16, 17, 20 | syl2anb 291 | . . . 4 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝑥 <R 𝑧) |
| 22 | ltresr 7972 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
| 23 | 21, 22 | sylibr 134 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) |
| 24 | 23 | a1i 9 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉)) |
| 25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 2808 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 Rcnr 7430 0Rc0r 7431 <R cltr 7436 ℝcr 7944 <ℝ cltrr 7949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-i1p 7600 df-iplp 7601 df-iltp 7603 df-enr 7859 df-nr 7860 df-ltr 7863 df-0r 7864 df-r 7955 df-lt 7958 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |