![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axpre-lttrn | GIF version |
Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7925. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7827 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 7827 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | elreal 7827 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R ⟨𝑧, 0R⟩ = 𝐶) | |
4 | breq1 4007 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
5 | 4 | anbi1d 465 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩))) |
6 | breq1 4007 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑧, 0R⟩)) | |
7 | 5, 6 | imbi12d 234 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
8 | breq2 4008 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 4007 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ ⟨𝑧, 0R⟩)) | |
10 | 8, 9 | anbi12d 473 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩))) |
11 | 10 | imbi1d 231 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
12 | breq2 4008 | . . . 4 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 464 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 4008 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 234 | . 2 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 7838 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
17 | ltresr 7838 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 7763 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 7737 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 5025 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 291 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝑥 <R 𝑧) |
22 | ltresr 7838 | . . . 4 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 134 | . . 3 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) |
24 | 23 | a1i 9 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 2772 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 class class class wbr 4004 Rcnr 7296 0Rc0r 7297 <R cltr 7302 ℝcr 7810 <ℝ cltrr 7815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-eprel 4290 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-1o 6417 df-2o 6418 df-oadd 6421 df-omul 6422 df-er 6535 df-ec 6537 df-qs 6541 df-ni 7303 df-pli 7304 df-mi 7305 df-lti 7306 df-plpq 7343 df-mpq 7344 df-enq 7346 df-nqqs 7347 df-plqqs 7348 df-mqqs 7349 df-1nqqs 7350 df-rq 7351 df-ltnqqs 7352 df-enq0 7423 df-nq0 7424 df-0nq0 7425 df-plq0 7426 df-mq0 7427 df-inp 7465 df-i1p 7466 df-iplp 7467 df-iltp 7469 df-enr 7725 df-nr 7726 df-ltr 7729 df-0r 7730 df-r 7821 df-lt 7824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |