Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-pre-mulext | GIF version |
Description: Strong extensionality of
multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 7829
(Contributed by Jim Kingdon, 18-Feb-2020.) |
Ref | Expression |
---|---|
ax-pre-mulext | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7752 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℝ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2136 | . . 3 wff 𝐶 ∈ ℝ |
8 | 3, 5, 7 | w3a 968 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) |
9 | cmul 7758 | . . . . 5 class · | |
10 | 1, 6, 9 | co 5842 | . . . 4 class (𝐴 · 𝐶) |
11 | 4, 6, 9 | co 5842 | . . . 4 class (𝐵 · 𝐶) |
12 | cltrr 7757 | . . . 4 class <ℝ | |
13 | 10, 11, 12 | wbr 3982 | . . 3 wff (𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) |
14 | 1, 4, 12 | wbr 3982 | . . . 4 wff 𝐴 <ℝ 𝐵 |
15 | 4, 1, 12 | wbr 3982 | . . . 4 wff 𝐵 <ℝ 𝐴 |
16 | 14, 15 | wo 698 | . . 3 wff (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) |
17 | 13, 16 | wi 4 | . 2 wff ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) |
18 | 8, 17 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
Colors of variables: wff set class |
This axiom is referenced by: remulext1 8497 |
Copyright terms: Public domain | W3C validator |