| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-pre-mulext | GIF version | ||
| Description: Strong extensionality of
multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 7955
(Contributed by Jim Kingdon, 18-Feb-2020.) |
| Ref | Expression |
|---|---|
| ax-pre-mulext | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 7878 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℝ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℝ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2167 | . . 3 wff 𝐶 ∈ ℝ |
| 8 | 3, 5, 7 | w3a 980 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) |
| 9 | cmul 7884 | . . . . 5 class · | |
| 10 | 1, 6, 9 | co 5922 | . . . 4 class (𝐴 · 𝐶) |
| 11 | 4, 6, 9 | co 5922 | . . . 4 class (𝐵 · 𝐶) |
| 12 | cltrr 7883 | . . . 4 class <ℝ | |
| 13 | 10, 11, 12 | wbr 4033 | . . 3 wff (𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) |
| 14 | 1, 4, 12 | wbr 4033 | . . . 4 wff 𝐴 <ℝ 𝐵 |
| 15 | 4, 1, 12 | wbr 4033 | . . . 4 wff 𝐵 <ℝ 𝐴 |
| 16 | 14, 15 | wo 709 | . . 3 wff (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴) |
| 17 | 13, 16 | wi 4 | . 2 wff ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) |
| 18 | 8, 17 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
| Colors of variables: wff set class |
| This axiom is referenced by: remulext1 8626 |
| Copyright terms: Public domain | W3C validator |