Detailed syntax breakdown of Axiom ax-arch
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class 𝐴 | 
| 2 |   | cr 7878 | 
. . 3
class
ℝ | 
| 3 | 1, 2 | wcel 2167 | 
. 2
wff 𝐴 ∈ ℝ | 
| 4 |   | vn | 
. . . . 5
setvar 𝑛 | 
| 5 | 4 | cv 1363 | 
. . . 4
class 𝑛 | 
| 6 |   | cltrr 7883 | 
. . . 4
class 
<ℝ | 
| 7 | 1, 5, 6 | wbr 4033 | 
. . 3
wff 𝐴 <ℝ 𝑛 | 
| 8 |   | c1 7880 | 
. . . . . . 7
class
1 | 
| 9 |   | vx | 
. . . . . . . 8
setvar 𝑥 | 
| 10 | 9 | cv 1363 | 
. . . . . . 7
class 𝑥 | 
| 11 | 8, 10 | wcel 2167 | 
. . . . . 6
wff 1 ∈
𝑥 | 
| 12 |   | vy | 
. . . . . . . . . 10
setvar 𝑦 | 
| 13 | 12 | cv 1363 | 
. . . . . . . . 9
class 𝑦 | 
| 14 |   | caddc 7882 | 
. . . . . . . . 9
class 
+ | 
| 15 | 13, 8, 14 | co 5922 | 
. . . . . . . 8
class (𝑦 + 1) | 
| 16 | 15, 10 | wcel 2167 | 
. . . . . . 7
wff (𝑦 + 1) ∈ 𝑥 | 
| 17 | 16, 12, 10 | wral 2475 | 
. . . . . 6
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 | 
| 18 | 11, 17 | wa 104 | 
. . . . 5
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) | 
| 19 | 18, 9 | cab 2182 | 
. . . 4
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 20 | 19 | cint 3874 | 
. . 3
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 21 | 7, 4, 20 | wrex 2476 | 
. 2
wff
∃𝑛 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛 | 
| 22 | 3, 21 | wi 4 | 
1
wff (𝐴 ∈ ℝ →
∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |