Detailed syntax breakdown of Axiom ax-arch
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cr 7710 |
. . 3
class
ℝ |
3 | 1, 2 | wcel 2125 |
. 2
wff 𝐴 ∈ ℝ |
4 | | vn |
. . . . 5
setvar 𝑛 |
5 | 4 | cv 1331 |
. . . 4
class 𝑛 |
6 | | cltrr 7715 |
. . . 4
class
<ℝ |
7 | 1, 5, 6 | wbr 3961 |
. . 3
wff 𝐴 <ℝ 𝑛 |
8 | | c1 7712 |
. . . . . . 7
class
1 |
9 | | vx |
. . . . . . . 8
setvar 𝑥 |
10 | 9 | cv 1331 |
. . . . . . 7
class 𝑥 |
11 | 8, 10 | wcel 2125 |
. . . . . 6
wff 1 ∈
𝑥 |
12 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
13 | 12 | cv 1331 |
. . . . . . . . 9
class 𝑦 |
14 | | caddc 7714 |
. . . . . . . . 9
class
+ |
15 | 13, 8, 14 | co 5814 |
. . . . . . . 8
class (𝑦 + 1) |
16 | 15, 10 | wcel 2125 |
. . . . . . 7
wff (𝑦 + 1) ∈ 𝑥 |
17 | 16, 12, 10 | wral 2432 |
. . . . . 6
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 |
18 | 11, 17 | wa 103 |
. . . . 5
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) |
19 | 18, 9 | cab 2140 |
. . . 4
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
20 | 19 | cint 3803 |
. . 3
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
21 | 7, 4, 20 | wrex 2433 |
. 2
wff
∃𝑛 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛 |
22 | 3, 21 | wi 4 |
1
wff (𝐴 ∈ ℝ →
∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |