Detailed syntax breakdown of Axiom ax-arch
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cr 7895 |
. . 3
class
ℝ |
| 3 | 1, 2 | wcel 2167 |
. 2
wff 𝐴 ∈ ℝ |
| 4 | | vn |
. . . . 5
setvar 𝑛 |
| 5 | 4 | cv 1363 |
. . . 4
class 𝑛 |
| 6 | | cltrr 7900 |
. . . 4
class
<ℝ |
| 7 | 1, 5, 6 | wbr 4034 |
. . 3
wff 𝐴 <ℝ 𝑛 |
| 8 | | c1 7897 |
. . . . . . 7
class
1 |
| 9 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 10 | 9 | cv 1363 |
. . . . . . 7
class 𝑥 |
| 11 | 8, 10 | wcel 2167 |
. . . . . 6
wff 1 ∈
𝑥 |
| 12 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 13 | 12 | cv 1363 |
. . . . . . . . 9
class 𝑦 |
| 14 | | caddc 7899 |
. . . . . . . . 9
class
+ |
| 15 | 13, 8, 14 | co 5925 |
. . . . . . . 8
class (𝑦 + 1) |
| 16 | 15, 10 | wcel 2167 |
. . . . . . 7
wff (𝑦 + 1) ∈ 𝑥 |
| 17 | 16, 12, 10 | wral 2475 |
. . . . . 6
wff
∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 |
| 18 | 11, 17 | wa 104 |
. . . . 5
wff (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) |
| 19 | 18, 9 | cab 2182 |
. . . 4
class {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 20 | 19 | cint 3875 |
. . 3
class ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 21 | 7, 4, 20 | wrex 2476 |
. 2
wff
∃𝑛 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛 |
| 22 | 3, 21 | wi 4 |
1
wff (𝐴 ∈ ℝ →
∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |