ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulext GIF version

Theorem axpre-mulext 8014
Description: Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 8056.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-mulext ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-mulext
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7954 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7954 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7954 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 oveq1 5961 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐴 · ⟨𝑧, 0R⟩))
54breq1d 4058 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩)))
6 breq1 4051 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
7 breq2 4052 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
86, 7orbi12d 795 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
95, 8imbi12d 234 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
10 oveq1 5961 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐵 · ⟨𝑧, 0R⟩))
1110breq2d 4060 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩)))
12 breq2 4052 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
13 breq1 4051 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1412, 13orbi12d 795 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1511, 14imbi12d 234 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴))))
16 oveq2 5962 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 · ⟨𝑧, 0R⟩) = (𝐴 · 𝐶))
17 oveq2 5962 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 · ⟨𝑧, 0R⟩) = (𝐵 · 𝐶))
1816, 17breq12d 4061 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
1918imbi1d 231 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴)) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴))))
20 mulextsr1 7907 . . 3 ((𝑥R𝑦R𝑧R) → ((𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧) → (𝑥 <R 𝑦𝑦 <R 𝑥)))
21 mulresr 7964 . . . . . 6 ((𝑥R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
22213adant2 1019 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
23 mulresr 7964 . . . . . 6 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
24233adant1 1018 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2522, 24breq12d 4061 . . . 4 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ ⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩))
26 ltresr 7965 . . . 4 (⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩ ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧))
2725, 26bitrdi 196 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧)))
28 ltresr 7965 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
29 ltresr 7965 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
3028, 29orbi12i 766 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
3130a1i 9 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥)))
3220, 27, 313imtr4d 203 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
331, 2, 3, 9, 15, 19, 323gencl 2808 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  cop 3638   class class class wbr 4048  (class class class)co 5954  Rcnr 7423  0Rc0r 7424   ·R cmr 7428   <R cltr 7429  cr 7937   < cltrr 7942   · cmul 7943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-i1p 7593  df-iplp 7594  df-imp 7595  df-iltp 7596  df-enr 7852  df-nr 7853  df-plr 7854  df-mr 7855  df-ltr 7856  df-0r 7857  df-m1r 7859  df-c 7944  df-r 7948  df-mul 7950  df-lt 7951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator