ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulext GIF version

Theorem axpre-mulext 7720
Description: Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7762.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-mulext ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-mulext
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7660 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7660 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7660 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 oveq1 5789 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐴 · ⟨𝑧, 0R⟩))
54breq1d 3947 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩)))
6 breq1 3940 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
7 breq2 3941 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
86, 7orbi12d 783 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
95, 8imbi12d 233 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
10 oveq1 5789 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐵 · ⟨𝑧, 0R⟩))
1110breq2d 3949 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩)))
12 breq2 3941 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
13 breq1 3940 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1412, 13orbi12d 783 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1511, 14imbi12d 233 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴))))
16 oveq2 5790 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 · ⟨𝑧, 0R⟩) = (𝐴 · 𝐶))
17 oveq2 5790 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 · ⟨𝑧, 0R⟩) = (𝐵 · 𝐶))
1816, 17breq12d 3950 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
1918imbi1d 230 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴)) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴))))
20 mulextsr1 7613 . . 3 ((𝑥R𝑦R𝑧R) → ((𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧) → (𝑥 <R 𝑦𝑦 <R 𝑥)))
21 mulresr 7670 . . . . . 6 ((𝑥R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
22213adant2 1001 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
23 mulresr 7670 . . . . . 6 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
24233adant1 1000 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2522, 24breq12d 3950 . . . 4 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ ⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩))
26 ltresr 7671 . . . 4 (⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩ ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧))
2725, 26syl6bb 195 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧)))
28 ltresr 7671 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
29 ltresr 7671 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
3028, 29orbi12i 754 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
3130a1i 9 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥)))
3220, 27, 313imtr4d 202 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
331, 2, 3, 9, 15, 19, 323gencl 2723 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  cop 3535   class class class wbr 3937  (class class class)co 5782  Rcnr 7129  0Rc0r 7130   ·R cmr 7134   <R cltr 7135  cr 7643   < cltrr 7648   · cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-ltr 7562  df-0r 7563  df-m1r 7565  df-c 7650  df-r 7654  df-mul 7656  df-lt 7657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator