ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-mulext GIF version

Theorem axpre-mulext 7948
Description: Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 7990.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-mulext ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem axpre-mulext
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7888 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 7888 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 7888 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 oveq1 5925 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐴 · ⟨𝑧, 0R⟩))
54breq1d 4039 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩)))
6 breq1 4032 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
7 breq2 4033 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ ⟨𝑦, 0R⟩ < 𝐴))
86, 7orbi12d 794 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)))
95, 8imbi12d 234 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴))))
10 oveq1 5925 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = (𝐵 · ⟨𝑧, 0R⟩))
1110breq2d 4041 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩)))
12 breq2 4033 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
13 breq1 4032 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ < 𝐴𝐵 < 𝐴))
1412, 13orbi12d 794 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1511, 14imbi12d 234 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (𝐴 <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ < 𝐴)) ↔ ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴))))
16 oveq2 5926 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 · ⟨𝑧, 0R⟩) = (𝐴 · 𝐶))
17 oveq2 5926 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 · ⟨𝑧, 0R⟩) = (𝐵 · 𝐶))
1816, 17breq12d 4042 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
1918imbi1d 231 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 · ⟨𝑧, 0R⟩) < (𝐵 · ⟨𝑧, 0R⟩) → (𝐴 < 𝐵𝐵 < 𝐴)) ↔ ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴))))
20 mulextsr1 7841 . . 3 ((𝑥R𝑦R𝑧R) → ((𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧) → (𝑥 <R 𝑦𝑦 <R 𝑥)))
21 mulresr 7898 . . . . . 6 ((𝑥R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
22213adant2 1018 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑥 ·R 𝑧), 0R⟩)
23 mulresr 7898 . . . . . 6 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
24233adant1 1017 . . . . 5 ((𝑥R𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2522, 24breq12d 4042 . . . 4 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ ⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩))
26 ltresr 7899 . . . 4 (⟨(𝑥 ·R 𝑧), 0R⟩ < ⟨(𝑦 ·R 𝑧), 0R⟩ ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧))
2725, 26bitrdi 196 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) ↔ (𝑥 ·R 𝑧) <R (𝑦 ·R 𝑧)))
28 ltresr 7899 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
29 ltresr 7899 . . . . 5 (⟨𝑦, 0R⟩ <𝑥, 0R⟩ ↔ 𝑦 <R 𝑥)
3028, 29orbi12i 765 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥))
3130a1i 9 . . 3 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩) ↔ (𝑥 <R 𝑦𝑦 <R 𝑥)))
3220, 27, 313imtr4d 203 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ · ⟨𝑧, 0R⟩) < (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∨ ⟨𝑦, 0R⟩ <𝑥, 0R⟩)))
331, 2, 3, 9, 15, 19, 323gencl 2794 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  cop 3621   class class class wbr 4029  (class class class)co 5918  Rcnr 7357  0Rc0r 7358   ·R cmr 7362   <R cltr 7363  cr 7871   < cltrr 7876   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-iltp 7530  df-enr 7786  df-nr 7787  df-plr 7788  df-mr 7789  df-ltr 7790  df-0r 7791  df-m1r 7793  df-c 7878  df-r 7882  df-mul 7884  df-lt 7885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator