ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-pre-suploc GIF version

Axiom ax-pre-suploc 7854
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

Although this and ax-caucvg 7853 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7853.

(Contributed by Jim Kingdon, 23-Jan-2024.)

Assertion
Ref Expression
ax-pre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Axiom ax-pre-suploc
StepHypRef Expression
1 cA . . . . 5 class 𝐴
2 cr 7732 . . . . 5 class
31, 2wss 3102 . . . 4 wff 𝐴 ⊆ ℝ
4 vx . . . . . . 7 setvar 𝑥
54cv 1334 . . . . . 6 class 𝑥
65, 1wcel 2128 . . . . 5 wff 𝑥𝐴
76, 4wex 1472 . . . 4 wff 𝑥 𝑥𝐴
83, 7wa 103 . . 3 wff (𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴)
9 vy . . . . . . . 8 setvar 𝑦
109cv 1334 . . . . . . 7 class 𝑦
11 cltrr 7737 . . . . . . 7 class <
1210, 5, 11wbr 3966 . . . . . 6 wff 𝑦 < 𝑥
1312, 9, 1wral 2435 . . . . 5 wff 𝑦𝐴 𝑦 < 𝑥
1413, 4, 2wrex 2436 . . . 4 wff 𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥
155, 10, 11wbr 3966 . . . . . . 7 wff 𝑥 < 𝑦
16 vz . . . . . . . . . . 11 setvar 𝑧
1716cv 1334 . . . . . . . . . 10 class 𝑧
185, 17, 11wbr 3966 . . . . . . . . 9 wff 𝑥 < 𝑧
1918, 16, 1wrex 2436 . . . . . . . 8 wff 𝑧𝐴 𝑥 < 𝑧
2017, 10, 11wbr 3966 . . . . . . . . 9 wff 𝑧 < 𝑦
2120, 16, 1wral 2435 . . . . . . . 8 wff 𝑧𝐴 𝑧 < 𝑦
2219, 21wo 698 . . . . . . 7 wff (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)
2315, 22wi 4 . . . . . 6 wff (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
2423, 9, 2wral 2435 . . . . 5 wff 𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
2524, 4, 2wral 2435 . . . 4 wff 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
2614, 25wa 103 . . 3 wff (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
278, 26wa 103 . 2 wff ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))))
2815wn 3 . . . . 5 wff ¬ 𝑥 < 𝑦
2928, 9, 1wral 2435 . . . 4 wff 𝑦𝐴 ¬ 𝑥 < 𝑦
3010, 17, 11wbr 3966 . . . . . . 7 wff 𝑦 < 𝑧
3130, 16, 1wrex 2436 . . . . . 6 wff 𝑧𝐴 𝑦 < 𝑧
3212, 31wi 4 . . . . 5 wff (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)
3332, 9, 2wral 2435 . . . 4 wff 𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)
3429, 33wa 103 . . 3 wff (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
3534, 4, 2wrex 2436 . 2 wff 𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
3627, 35wi 4 1 wff (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
This axiom is referenced by:  axsuploc  7951
  Copyright terms: Public domain W3C validator