Detailed syntax breakdown of Axiom ax-pre-suploc
Step | Hyp | Ref
| Expression |
1 | | cA |
. . . . 5
class 𝐴 |
2 | | cr 7732 |
. . . . 5
class
ℝ |
3 | 1, 2 | wss 3102 |
. . . 4
wff 𝐴 ⊆
ℝ |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1334 |
. . . . . 6
class 𝑥 |
6 | 5, 1 | wcel 2128 |
. . . . 5
wff 𝑥 ∈ 𝐴 |
7 | 6, 4 | wex 1472 |
. . . 4
wff
∃𝑥 𝑥 ∈ 𝐴 |
8 | 3, 7 | wa 103 |
. . 3
wff (𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) |
9 | | vy |
. . . . . . . 8
setvar 𝑦 |
10 | 9 | cv 1334 |
. . . . . . 7
class 𝑦 |
11 | | cltrr 7737 |
. . . . . . 7
class
<ℝ |
12 | 10, 5, 11 | wbr 3966 |
. . . . . 6
wff 𝑦 <ℝ 𝑥 |
13 | 12, 9, 1 | wral 2435 |
. . . . 5
wff
∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 |
14 | 13, 4, 2 | wrex 2436 |
. . . 4
wff
∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 |
15 | 5, 10, 11 | wbr 3966 |
. . . . . . 7
wff 𝑥 <ℝ 𝑦 |
16 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
17 | 16 | cv 1334 |
. . . . . . . . . 10
class 𝑧 |
18 | 5, 17, 11 | wbr 3966 |
. . . . . . . . 9
wff 𝑥 <ℝ 𝑧 |
19 | 18, 16, 1 | wrex 2436 |
. . . . . . . 8
wff
∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 |
20 | 17, 10, 11 | wbr 3966 |
. . . . . . . . 9
wff 𝑧 <ℝ 𝑦 |
21 | 20, 16, 1 | wral 2435 |
. . . . . . . 8
wff
∀𝑧 ∈
𝐴 𝑧 <ℝ 𝑦 |
22 | 19, 21 | wo 698 |
. . . . . . 7
wff
(∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦) |
23 | 15, 22 | wi 4 |
. . . . . 6
wff (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) |
24 | 23, 9, 2 | wral 2435 |
. . . . 5
wff
∀𝑦 ∈
ℝ (𝑥
<ℝ 𝑦
→ (∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) |
25 | 24, 4, 2 | wral 2435 |
. . . 4
wff
∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥
<ℝ 𝑦
→ (∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) |
26 | 14, 25 | wa 103 |
. . 3
wff
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) |
27 | 8, 26 | wa 103 |
. 2
wff ((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
28 | 15 | wn 3 |
. . . . 5
wff ¬
𝑥 <ℝ
𝑦 |
29 | 28, 9, 1 | wral 2435 |
. . . 4
wff
∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 |
30 | 10, 17, 11 | wbr 3966 |
. . . . . . 7
wff 𝑦 <ℝ 𝑧 |
31 | 30, 16, 1 | wrex 2436 |
. . . . . 6
wff
∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧 |
32 | 12, 31 | wi 4 |
. . . . 5
wff (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) |
33 | 32, 9, 2 | wral 2435 |
. . . 4
wff
∀𝑦 ∈
ℝ (𝑦
<ℝ 𝑥
→ ∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧) |
34 | 29, 33 | wa 103 |
. . 3
wff
(∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) |
35 | 34, 4, 2 | wrex 2436 |
. 2
wff
∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) |
36 | 27, 35 | wi 4 |
1
wff (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |