Detailed syntax breakdown of Axiom ax-pre-suploc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . . . 5
class 𝐴 | 
| 2 |   | cr 7878 | 
. . . . 5
class
ℝ | 
| 3 | 1, 2 | wss 3157 | 
. . . 4
wff 𝐴 ⊆
ℝ | 
| 4 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 5 | 4 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 6 | 5, 1 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈ 𝐴 | 
| 7 | 6, 4 | wex 1506 | 
. . . 4
wff
∃𝑥 𝑥 ∈ 𝐴 | 
| 8 | 3, 7 | wa 104 | 
. . 3
wff (𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) | 
| 9 |   | vy | 
. . . . . . . 8
setvar 𝑦 | 
| 10 | 9 | cv 1363 | 
. . . . . . 7
class 𝑦 | 
| 11 |   | cltrr 7883 | 
. . . . . . 7
class 
<ℝ | 
| 12 | 10, 5, 11 | wbr 4033 | 
. . . . . 6
wff 𝑦 <ℝ 𝑥 | 
| 13 | 12, 9, 1 | wral 2475 | 
. . . . 5
wff
∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 | 
| 14 | 13, 4, 2 | wrex 2476 | 
. . . 4
wff
∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 | 
| 15 | 5, 10, 11 | wbr 4033 | 
. . . . . . 7
wff 𝑥 <ℝ 𝑦 | 
| 16 |   | vz | 
. . . . . . . . . . 11
setvar 𝑧 | 
| 17 | 16 | cv 1363 | 
. . . . . . . . . 10
class 𝑧 | 
| 18 | 5, 17, 11 | wbr 4033 | 
. . . . . . . . 9
wff 𝑥 <ℝ 𝑧 | 
| 19 | 18, 16, 1 | wrex 2476 | 
. . . . . . . 8
wff
∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 | 
| 20 | 17, 10, 11 | wbr 4033 | 
. . . . . . . . 9
wff 𝑧 <ℝ 𝑦 | 
| 21 | 20, 16, 1 | wral 2475 | 
. . . . . . . 8
wff
∀𝑧 ∈
𝐴 𝑧 <ℝ 𝑦 | 
| 22 | 19, 21 | wo 709 | 
. . . . . . 7
wff
(∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦) | 
| 23 | 15, 22 | wi 4 | 
. . . . . 6
wff (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) | 
| 24 | 23, 9, 2 | wral 2475 | 
. . . . 5
wff
∀𝑦 ∈
ℝ (𝑥
<ℝ 𝑦
→ (∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) | 
| 25 | 24, 4, 2 | wral 2475 | 
. . . 4
wff
∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥
<ℝ 𝑦
→ (∃𝑧 ∈
𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) | 
| 26 | 14, 25 | wa 104 | 
. . 3
wff
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) | 
| 27 | 8, 26 | wa 104 | 
. 2
wff ((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) | 
| 28 | 15 | wn 3 | 
. . . . 5
wff  ¬
𝑥 <ℝ
𝑦 | 
| 29 | 28, 9, 1 | wral 2475 | 
. . . 4
wff
∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 | 
| 30 | 10, 17, 11 | wbr 4033 | 
. . . . . . 7
wff 𝑦 <ℝ 𝑧 | 
| 31 | 30, 16, 1 | wrex 2476 | 
. . . . . 6
wff
∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧 | 
| 32 | 12, 31 | wi 4 | 
. . . . 5
wff (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) | 
| 33 | 32, 9, 2 | wral 2475 | 
. . . 4
wff
∀𝑦 ∈
ℝ (𝑦
<ℝ 𝑥
→ ∃𝑧 ∈
𝐴 𝑦 <ℝ 𝑧) | 
| 34 | 29, 33 | wa 104 | 
. . 3
wff
(∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) | 
| 35 | 34, 4, 2 | wrex 2476 | 
. 2
wff
∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) | 
| 36 | 27, 35 | wi 4 | 
1
wff (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |