Proof of Theorem axsuploc
Step | Hyp | Ref
| Expression |
1 | | ssel2 3137 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
2 | | ltxrlt 7964 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
3 | 1, 2 | sylan 281 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
4 | 3 | an32s 558 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
5 | 4 | ralbidva 2462 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥)) |
6 | 5 | rexbidva 2463 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥)) |
7 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℝ) |
8 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
9 | | ltxrlt 7964 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
10 | 7, 8, 9 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
11 | | simpllr 524 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | | ssel2 3137 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
13 | 12 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
14 | 13 | adantlr 469 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
15 | | ltxrlt 7964 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑧 ↔ 𝑥 <ℝ 𝑧)) |
16 | 11, 14, 15 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑥 < 𝑧 ↔ 𝑥 <ℝ 𝑧)) |
17 | 16 | rexbidva 2463 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧)) |
18 | | simplr 520 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑦 ∈ ℝ) |
19 | | ltxrlt 7964 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ 𝑧 <ℝ 𝑦)) |
20 | 14, 18, 19 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑧 < 𝑦 ↔ 𝑧 <ℝ 𝑦)) |
21 | 20 | ralbidva 2462 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∀𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) |
22 | 17, 21 | orbi12d 783 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) |
23 | 10, 22 | imbi12d 233 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
24 | 23 | ralbidva 2462 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ ℝ
(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
25 | 24 | ralbidva 2462 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
26 | 6, 25 | anbi12d 465 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
((∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
27 | 26 | adantr 274 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) → ((∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
28 | 27 | pm5.32i 450 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) ↔ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
29 | | ax-pre-suploc 7874 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
30 | 28, 29 | sylbi 120 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
31 | | simplr 520 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
32 | 1 | adantlr 469 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
33 | 31, 32, 9 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
34 | 33 | bicomd 140 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 <ℝ 𝑦 ↔ 𝑥 < 𝑦)) |
35 | 34 | notbid 657 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 <ℝ 𝑦 ↔ ¬ 𝑥 < 𝑦)) |
36 | 35 | ralbidva 2462 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
37 | 8, 7, 2 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
38 | 37 | bicomd 140 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦 <ℝ 𝑥 ↔ 𝑦 < 𝑥)) |
39 | | ltxrlt 7964 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧)) |
40 | 18, 14, 39 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧)) |
41 | 40 | bicomd 140 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑦 <ℝ 𝑧 ↔ 𝑦 < 𝑧)) |
42 | 41 | rexbidva 2463 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
43 | 38, 42 | imbi12d 233 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
44 | 43 | ralbidva 2462 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ ℝ
(𝑦 <ℝ
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
45 | 36, 44 | anbi12d 465 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
((∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
46 | 45 | rexbidva 2463 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
47 | 46 | ad2antrr 480 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → (∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
48 | 30, 47 | mpbid 146 |
1
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |