Proof of Theorem axsuploc
| Step | Hyp | Ref
| Expression |
| 1 | | ssel2 3179 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 2 | | ltxrlt 8109 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
| 3 | 1, 2 | sylan 283 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
| 4 | 3 | an32s 568 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
| 5 | 4 | ralbidva 2493 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥)) |
| 6 | 5 | rexbidva 2494 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥)) |
| 7 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℝ) |
| 8 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
| 9 | | ltxrlt 8109 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
| 11 | | simpllr 534 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 12 | | ssel2 3179 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
| 13 | 12 | adantlr 477 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
| 14 | 13 | adantlr 477 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
| 15 | | ltxrlt 8109 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑧 ↔ 𝑥 <ℝ 𝑧)) |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑥 < 𝑧 ↔ 𝑥 <ℝ 𝑧)) |
| 17 | 16 | rexbidva 2494 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧)) |
| 18 | | simplr 528 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 19 | | ltxrlt 8109 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦 ↔ 𝑧 <ℝ 𝑦)) |
| 20 | 14, 18, 19 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑧 < 𝑦 ↔ 𝑧 <ℝ 𝑦)) |
| 21 | 20 | ralbidva 2493 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∀𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)) |
| 22 | 17, 21 | orbi12d 794 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) |
| 23 | 10, 22 | imbi12d 234 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
| 24 | 23 | ralbidva 2493 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ ℝ
(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
| 25 | 24 | ralbidva 2493 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) |
| 26 | 6, 25 | anbi12d 473 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
((∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
| 27 | 26 | adantr 276 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) → ((∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
| 28 | 27 | pm5.32i 454 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) ↔ ((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))))) |
| 29 | | ax-pre-suploc 8017 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
| 30 | 28, 29 | sylbi 121 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
| 31 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 32 | 1 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 33 | 31, 32, 9 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦)) |
| 34 | 33 | bicomd 141 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 <ℝ 𝑦 ↔ 𝑥 < 𝑦)) |
| 35 | 34 | notbid 668 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 <ℝ 𝑦 ↔ ¬ 𝑥 < 𝑦)) |
| 36 | 35 | ralbidva 2493 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
| 37 | 8, 7, 2 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥)) |
| 38 | 37 | bicomd 141 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦 <ℝ 𝑥 ↔ 𝑦 < 𝑥)) |
| 39 | | ltxrlt 8109 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧)) |
| 40 | 18, 14, 39 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧)) |
| 41 | 40 | bicomd 141 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑦 <ℝ 𝑧 ↔ 𝑦 < 𝑧)) |
| 42 | 41 | rexbidva 2494 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 43 | 38, 42 | imbi12d 234 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 44 | 43 | ralbidva 2493 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ ℝ
(𝑦 <ℝ
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 45 | 36, 44 | anbi12d 473 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
((∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 46 | 45 | rexbidva 2494 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 47 | 46 | ad2antrr 488 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → (∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 48 | 30, 47 | mpbid 147 |
1
⊢ (((𝐴 ⊆ ℝ ∧
∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |