Detailed syntax breakdown of Axiom ax-caucvg
Step | Hyp | Ref
| Expression |
1 | | wph |
. 2
wff 𝜑 |
2 | | cc0 7749 |
. . . . . 6
class
0 |
3 | | vx |
. . . . . . 7
setvar 𝑥 |
4 | 3 | cv 1342 |
. . . . . 6
class 𝑥 |
5 | | cltrr 7753 |
. . . . . 6
class
<ℝ |
6 | 2, 4, 5 | wbr 3981 |
. . . . 5
wff 0
<ℝ 𝑥 |
7 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
8 | 7 | cv 1342 |
. . . . . . . . 9
class 𝑗 |
9 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
10 | 9 | cv 1342 |
. . . . . . . . 9
class 𝑘 |
11 | 8, 10, 5 | wbr 3981 |
. . . . . . . 8
wff 𝑗 <ℝ 𝑘 |
12 | | cF |
. . . . . . . . . . 11
class 𝐹 |
13 | 10, 12 | cfv 5187 |
. . . . . . . . . 10
class (𝐹‘𝑘) |
14 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
15 | 14 | cv 1342 |
. . . . . . . . . . 11
class 𝑦 |
16 | | caddc 7752 |
. . . . . . . . . . 11
class
+ |
17 | 15, 4, 16 | co 5841 |
. . . . . . . . . 10
class (𝑦 + 𝑥) |
18 | 13, 17, 5 | wbr 3981 |
. . . . . . . . 9
wff (𝐹‘𝑘) <ℝ (𝑦 + 𝑥) |
19 | 13, 4, 16 | co 5841 |
. . . . . . . . . 10
class ((𝐹‘𝑘) + 𝑥) |
20 | 15, 19, 5 | wbr 3981 |
. . . . . . . . 9
wff 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥) |
21 | 18, 20 | wa 103 |
. . . . . . . 8
wff ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)) |
22 | 11, 21 | wi 4 |
. . . . . . 7
wff (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
23 | | cN |
. . . . . . 7
class 𝑁 |
24 | 22, 9, 23 | wral 2443 |
. . . . . 6
wff
∀𝑘 ∈
𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
25 | 24, 7, 23 | wrex 2444 |
. . . . 5
wff
∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
26 | 6, 25 | wi 4 |
. . . 4
wff (0
<ℝ 𝑥
→ ∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
27 | | cr 7748 |
. . . 4
class
ℝ |
28 | 26, 3, 27 | wral 2443 |
. . 3
wff
∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
29 | 28, 14, 27 | wrex 2444 |
. 2
wff
∃𝑦 ∈
ℝ ∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
30 | 1, 29 | wi 4 |
1
wff (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ
𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |