Detailed syntax breakdown of Axiom ax-caucvg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | wph | 
. 2
wff 𝜑 | 
| 2 |   | cc0 7879 | 
. . . . . 6
class
0 | 
| 3 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 4 | 3 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 5 |   | cltrr 7883 | 
. . . . . 6
class 
<ℝ | 
| 6 | 2, 4, 5 | wbr 4033 | 
. . . . 5
wff 0
<ℝ 𝑥 | 
| 7 |   | vj | 
. . . . . . . . . 10
setvar 𝑗 | 
| 8 | 7 | cv 1363 | 
. . . . . . . . 9
class 𝑗 | 
| 9 |   | vk | 
. . . . . . . . . 10
setvar 𝑘 | 
| 10 | 9 | cv 1363 | 
. . . . . . . . 9
class 𝑘 | 
| 11 | 8, 10, 5 | wbr 4033 | 
. . . . . . . 8
wff 𝑗 <ℝ 𝑘 | 
| 12 |   | cF | 
. . . . . . . . . . 11
class 𝐹 | 
| 13 | 10, 12 | cfv 5258 | 
. . . . . . . . . 10
class (𝐹‘𝑘) | 
| 14 |   | vy | 
. . . . . . . . . . . 12
setvar 𝑦 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . . 11
class 𝑦 | 
| 16 |   | caddc 7882 | 
. . . . . . . . . . 11
class 
+ | 
| 17 | 15, 4, 16 | co 5922 | 
. . . . . . . . . 10
class (𝑦 + 𝑥) | 
| 18 | 13, 17, 5 | wbr 4033 | 
. . . . . . . . 9
wff (𝐹‘𝑘) <ℝ (𝑦 + 𝑥) | 
| 19 | 13, 4, 16 | co 5922 | 
. . . . . . . . . 10
class ((𝐹‘𝑘) + 𝑥) | 
| 20 | 15, 19, 5 | wbr 4033 | 
. . . . . . . . 9
wff 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥) | 
| 21 | 18, 20 | wa 104 | 
. . . . . . . 8
wff ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)) | 
| 22 | 11, 21 | wi 4 | 
. . . . . . 7
wff (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) | 
| 23 |   | cN | 
. . . . . . 7
class 𝑁 | 
| 24 | 22, 9, 23 | wral 2475 | 
. . . . . 6
wff
∀𝑘 ∈
𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) | 
| 25 | 24, 7, 23 | wrex 2476 | 
. . . . 5
wff
∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) | 
| 26 | 6, 25 | wi 4 | 
. . . 4
wff (0
<ℝ 𝑥
→ ∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) | 
| 27 |   | cr 7878 | 
. . . 4
class
ℝ | 
| 28 | 26, 3, 27 | wral 2475 | 
. . 3
wff
∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) | 
| 29 | 28, 14, 27 | wrex 2476 | 
. 2
wff
∃𝑦 ∈
ℝ ∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) | 
| 30 | 1, 29 | wi 4 | 
1
wff (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ
𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |