Detailed syntax breakdown of Axiom ax-caucvg
| Step | Hyp | Ref
| Expression |
| 1 | | wph |
. 2
wff 𝜑 |
| 2 | | cc0 7896 |
. . . . . 6
class
0 |
| 3 | | vx |
. . . . . . 7
setvar 𝑥 |
| 4 | 3 | cv 1363 |
. . . . . 6
class 𝑥 |
| 5 | | cltrr 7900 |
. . . . . 6
class
<ℝ |
| 6 | 2, 4, 5 | wbr 4034 |
. . . . 5
wff 0
<ℝ 𝑥 |
| 7 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
| 8 | 7 | cv 1363 |
. . . . . . . . 9
class 𝑗 |
| 9 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 10 | 9 | cv 1363 |
. . . . . . . . 9
class 𝑘 |
| 11 | 8, 10, 5 | wbr 4034 |
. . . . . . . 8
wff 𝑗 <ℝ 𝑘 |
| 12 | | cF |
. . . . . . . . . . 11
class 𝐹 |
| 13 | 10, 12 | cfv 5259 |
. . . . . . . . . 10
class (𝐹‘𝑘) |
| 14 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 15 | 14 | cv 1363 |
. . . . . . . . . . 11
class 𝑦 |
| 16 | | caddc 7899 |
. . . . . . . . . . 11
class
+ |
| 17 | 15, 4, 16 | co 5925 |
. . . . . . . . . 10
class (𝑦 + 𝑥) |
| 18 | 13, 17, 5 | wbr 4034 |
. . . . . . . . 9
wff (𝐹‘𝑘) <ℝ (𝑦 + 𝑥) |
| 19 | 13, 4, 16 | co 5925 |
. . . . . . . . . 10
class ((𝐹‘𝑘) + 𝑥) |
| 20 | 15, 19, 5 | wbr 4034 |
. . . . . . . . 9
wff 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥) |
| 21 | 18, 20 | wa 104 |
. . . . . . . 8
wff ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)) |
| 22 | 11, 21 | wi 4 |
. . . . . . 7
wff (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
| 23 | | cN |
. . . . . . 7
class 𝑁 |
| 24 | 22, 9, 23 | wral 2475 |
. . . . . 6
wff
∀𝑘 ∈
𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
| 25 | 24, 7, 23 | wrex 2476 |
. . . . 5
wff
∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))) |
| 26 | 6, 25 | wi 4 |
. . . 4
wff (0
<ℝ 𝑥
→ ∃𝑗 ∈
𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
| 27 | | cr 7895 |
. . . 4
class
ℝ |
| 28 | 26, 3, 27 | wral 2475 |
. . 3
wff
∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
| 29 | 28, 14, 27 | wrex 2476 |
. 2
wff
∃𝑦 ∈
ℝ ∀𝑥 ∈
ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥)))) |
| 30 | 1, 29 | wi 4 |
1
wff (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ
𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |