| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr | GIF version | ||
| Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| bitr | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi1 240 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) | |
| 2 | 1 | biimpar 297 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: opelopabt 4297 |
| Copyright terms: Public domain | W3C validator |