ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr GIF version

Theorem bitr 469
Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bitr (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))

Proof of Theorem bitr
StepHypRef Expression
1 bibi1 239 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
21biimpar 295 1 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  opelopabt  4247
  Copyright terms: Public domain W3C validator