| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 616 eqtr 2247 opabss 4147 euotd 4340 wetriext 4668 sosng 4791 xpsspw 4830 brcogw 4890 funimaexglem 5403 funfni 5422 fnco 5430 fnssres 5435 fn0 5442 fnimadisj 5443 fnimaeq0 5444 foco 5558 foimacnv 5589 fvelimab 5689 fvopab3ig 5707 dff3im 5779 dffo4 5782 fmptco 5800 f1eqcocnv 5914 f1ocnv2d 6208 fnexALT 6254 xp1st 6309 xp2nd 6310 tfrlemiubacc 6474 tfri2d 6480 tfr1onlemubacc 6490 tfrcllemubacc 6503 tfri3 6511 ecelqsg 6733 elqsn0m 6748 fidifsnen 7028 pr1or2 7363 recclnq 7575 nq0a0 7640 qreccl 9833 difelfzle 10326 exfzdc 10441 zsupcllemstep 10444 modifeq2int 10603 frec2uzlt2d 10621 zzlesq 10925 1elfz0hash 11023 lennncl 11086 wrdsymb0 11099 ccatsymb 11132 ccatlid 11136 ccatass 11138 ccatswrd 11197 swrdccat2 11198 ccatpfx 11228 swrdccatfn 11251 swrdccat 11262 caucvgrelemcau 11486 recvalap 11603 fzomaxdiflem 11618 2zsupmax 11732 2zinfmin 11749 fsumparts 11976 ntrivcvgap 12054 fsumdvds 12348 divconjdvds 12355 ndvdssub 12436 rplpwr 12543 dvdssqlem 12546 eucalgcvga 12575 mulgcddvds 12611 isprm2lem 12633 powm2modprm 12770 coprimeprodsq 12775 pythagtriplem11 12792 pythagtriplem13 12794 pcadd2 12859 4sqlem11 12919 grpidd 13411 ismndd 13465 gsumfzz 13523 gsumwmhm 13526 mulgaddcom 13678 resghm 13792 conjnsg 13813 isrngd 13911 isringd 13999 01eq0ring 14147 lspsneq0b 14385 lmodindp1 14386 znf1o 14609 psrgrp 14643 uniopn 14669 ntrval 14778 clsval 14779 neival 14811 restdis 14852 lmbrf 14883 cnpnei 14887 dviaddf 15373 dvimulf 15374 logbgt0b 15634 perfectlem2 15668 lgslem4 15676 lgsmod 15699 lgsdir2lem2 15702 lgsdir2 15706 lgsne0 15711 lgsmulsqcoprm 15719 lgseisenlem1 15743 2lgsoddprm 15786 2sqlem4 15791 |
| Copyright terms: Public domain | W3C validator |