| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2214 opabss 4098 euotd 4288 wetriext 4614 sosng 4737 xpsspw 4776 brcogw 4836 funimaexglem 5342 funfni 5359 fnco 5367 fnssres 5372 fn0 5378 fnimadisj 5379 fnimaeq0 5380 foco 5492 foimacnv 5523 fvelimab 5618 fvopab3ig 5636 dff3im 5708 dffo4 5711 fmptco 5729 f1eqcocnv 5839 f1ocnv2d 6129 fnexALT 6170 xp1st 6225 xp2nd 6226 tfrlemiubacc 6390 tfri2d 6396 tfr1onlemubacc 6406 tfrcllemubacc 6419 tfri3 6427 ecelqsg 6649 elqsn0m 6664 fidifsnen 6933 recclnq 7462 nq0a0 7527 qreccl 9719 difelfzle 10212 exfzdc 10319 zsupcllemstep 10322 modifeq2int 10481 frec2uzlt2d 10499 zzlesq 10803 1elfz0hash 10901 lennncl 10958 wrdsymb0 10970 caucvgrelemcau 11148 recvalap 11265 fzomaxdiflem 11280 2zsupmax 11394 2zinfmin 11411 fsumparts 11638 ntrivcvgap 11716 fsumdvds 12010 divconjdvds 12017 ndvdssub 12098 rplpwr 12205 dvdssqlem 12208 eucalgcvga 12237 mulgcddvds 12273 isprm2lem 12295 powm2modprm 12432 coprimeprodsq 12437 pythagtriplem11 12454 pythagtriplem13 12456 pcadd2 12521 4sqlem11 12581 grpidd 13052 ismndd 13104 gsumfzz 13153 gsumwmhm 13156 mulgaddcom 13302 resghm 13416 conjnsg 13437 isrngd 13535 isringd 13623 01eq0ring 13771 lspsneq0b 14009 lmodindp1 14010 znf1o 14233 uniopn 14263 ntrval 14372 clsval 14373 neival 14405 restdis 14446 lmbrf 14477 cnpnei 14481 dviaddf 14967 dvimulf 14968 logbgt0b 15228 perfectlem2 15262 lgslem4 15270 lgsmod 15293 lgsdir2lem2 15296 lgsdir2 15300 lgsne0 15305 lgsmulsqcoprm 15313 lgseisenlem1 15337 2lgsoddprm 15380 2sqlem4 15385 |
| Copyright terms: Public domain | W3C validator |