| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2214 opabss 4098 euotd 4288 wetriext 4614 sosng 4737 xpsspw 4776 brcogw 4836 funimaexglem 5342 funfni 5361 fnco 5369 fnssres 5374 fn0 5380 fnimadisj 5381 fnimaeq0 5382 foco 5494 foimacnv 5525 fvelimab 5620 fvopab3ig 5638 dff3im 5710 dffo4 5713 fmptco 5731 f1eqcocnv 5841 f1ocnv2d 6131 fnexALT 6177 xp1st 6232 xp2nd 6233 tfrlemiubacc 6397 tfri2d 6403 tfr1onlemubacc 6413 tfrcllemubacc 6426 tfri3 6434 ecelqsg 6656 elqsn0m 6671 fidifsnen 6940 recclnq 7478 nq0a0 7543 qreccl 9735 difelfzle 10228 exfzdc 10335 zsupcllemstep 10338 modifeq2int 10497 frec2uzlt2d 10515 zzlesq 10819 1elfz0hash 10917 lennncl 10974 wrdsymb0 10986 caucvgrelemcau 11164 recvalap 11281 fzomaxdiflem 11296 2zsupmax 11410 2zinfmin 11427 fsumparts 11654 ntrivcvgap 11732 fsumdvds 12026 divconjdvds 12033 ndvdssub 12114 rplpwr 12221 dvdssqlem 12224 eucalgcvga 12253 mulgcddvds 12289 isprm2lem 12311 powm2modprm 12448 coprimeprodsq 12453 pythagtriplem11 12470 pythagtriplem13 12472 pcadd2 12537 4sqlem11 12597 grpidd 13087 ismndd 13141 gsumfzz 13199 gsumwmhm 13202 mulgaddcom 13354 resghm 13468 conjnsg 13489 isrngd 13587 isringd 13675 01eq0ring 13823 lspsneq0b 14061 lmodindp1 14062 znf1o 14285 psrgrp 14319 uniopn 14345 ntrval 14454 clsval 14455 neival 14487 restdis 14528 lmbrf 14559 cnpnei 14563 dviaddf 15049 dvimulf 15050 logbgt0b 15310 perfectlem2 15344 lgslem4 15352 lgsmod 15375 lgsdir2lem2 15378 lgsdir2 15382 lgsne0 15387 lgsmulsqcoprm 15395 lgseisenlem1 15419 2lgsoddprm 15462 2sqlem4 15467 |
| Copyright terms: Public domain | W3C validator |