![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2211 opabss 4094 euotd 4284 wetriext 4610 sosng 4733 xpsspw 4772 brcogw 4832 funimaexglem 5338 funfni 5355 fnco 5363 fnssres 5368 fn0 5374 fnimadisj 5375 fnimaeq0 5376 foco 5488 foimacnv 5519 fvelimab 5614 fvopab3ig 5632 dff3im 5704 dffo4 5707 fmptco 5725 f1eqcocnv 5835 f1ocnv2d 6124 fnexALT 6165 xp1st 6220 xp2nd 6221 tfrlemiubacc 6385 tfri2d 6391 tfr1onlemubacc 6401 tfrcllemubacc 6414 tfri3 6422 ecelqsg 6644 elqsn0m 6659 fidifsnen 6928 recclnq 7454 nq0a0 7519 qreccl 9710 difelfzle 10203 exfzdc 10310 modifeq2int 10460 frec2uzlt2d 10478 zzlesq 10782 1elfz0hash 10880 lennncl 10937 wrdsymb0 10949 caucvgrelemcau 11127 recvalap 11244 fzomaxdiflem 11259 2zsupmax 11372 2zinfmin 11389 fsumparts 11616 ntrivcvgap 11694 divconjdvds 11994 ndvdssub 12074 zsupcllemstep 12085 rplpwr 12167 dvdssqlem 12170 eucalgcvga 12199 mulgcddvds 12235 isprm2lem 12257 powm2modprm 12393 coprimeprodsq 12398 pythagtriplem11 12415 pythagtriplem13 12417 pcadd2 12482 4sqlem11 12542 grpidd 12969 ismndd 13021 gsumfzz 13070 gsumwmhm 13073 mulgaddcom 13219 resghm 13333 conjnsg 13354 isrngd 13452 isringd 13540 01eq0ring 13688 lspsneq0b 13926 lmodindp1 13927 znf1o 14150 uniopn 14180 ntrval 14289 clsval 14290 neival 14322 restdis 14363 lmbrf 14394 cnpnei 14398 dviaddf 14884 dvimulf 14885 logbgt0b 15139 lgslem4 15160 lgsmod 15183 lgsdir2lem2 15186 lgsdir2 15190 lgsne0 15195 lgsmulsqcoprm 15203 lgseisenlem1 15227 2lgsoddprm 15270 2sqlem4 15275 |
Copyright terms: Public domain | W3C validator |