Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exbiri 380 bitr 464 eqtr 2175 opabss 4028 euotd 4214 wetriext 4536 sosng 4659 xpsspw 4698 brcogw 4755 funimaexglem 5253 funfni 5270 fnco 5278 fnssres 5283 fn0 5289 fnimadisj 5290 fnimaeq0 5291 foco 5402 foimacnv 5432 fvelimab 5524 fvopab3ig 5542 dff3im 5612 dffo4 5615 fmptco 5633 f1eqcocnv 5741 f1ocnv2d 6024 fnexALT 6061 xp1st 6113 xp2nd 6114 tfrlemiubacc 6277 tfri2d 6283 tfr1onlemubacc 6293 tfrcllemubacc 6306 tfri3 6314 ecelqsg 6533 elqsn0m 6548 fidifsnen 6815 recclnq 7312 nq0a0 7377 qreccl 9551 difelfzle 10033 exfzdc 10139 modifeq2int 10285 frec2uzlt2d 10303 1elfz0hash 10680 caucvgrelemcau 10880 recvalap 10997 fzomaxdiflem 11012 2zsupmax 11125 fsumparts 11367 ntrivcvgap 11445 divconjdvds 11741 ndvdssub 11821 zsupcllemstep 11832 rplpwr 11911 dvdssqlem 11914 eucalgcvga 11935 mulgcddvds 11971 isprm2lem 11993 powm2modprm 12127 uniopn 12410 ntrval 12521 clsval 12522 neival 12554 restdis 12595 lmbrf 12626 cnpnei 12630 dviaddf 13080 dvimulf 13081 logbgt0b 13294 |
Copyright terms: Public domain | W3C validator |