| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2223 opabss 4108 euotd 4299 wetriext 4625 sosng 4748 xpsspw 4787 brcogw 4847 funimaexglem 5357 funfni 5376 fnco 5384 fnssres 5389 fn0 5395 fnimadisj 5396 fnimaeq0 5397 foco 5509 foimacnv 5540 fvelimab 5635 fvopab3ig 5653 dff3im 5725 dffo4 5728 fmptco 5746 f1eqcocnv 5860 f1ocnv2d 6150 fnexALT 6196 xp1st 6251 xp2nd 6252 tfrlemiubacc 6416 tfri2d 6422 tfr1onlemubacc 6432 tfrcllemubacc 6445 tfri3 6453 ecelqsg 6675 elqsn0m 6690 fidifsnen 6967 recclnq 7505 nq0a0 7570 qreccl 9763 difelfzle 10256 exfzdc 10369 zsupcllemstep 10372 modifeq2int 10531 frec2uzlt2d 10549 zzlesq 10853 1elfz0hash 10951 lennncl 11014 wrdsymb0 11026 ccatsymb 11058 ccatlid 11062 ccatass 11064 ccatswrd 11123 swrdccat2 11124 caucvgrelemcau 11291 recvalap 11408 fzomaxdiflem 11423 2zsupmax 11537 2zinfmin 11554 fsumparts 11781 ntrivcvgap 11859 fsumdvds 12153 divconjdvds 12160 ndvdssub 12241 rplpwr 12348 dvdssqlem 12351 eucalgcvga 12380 mulgcddvds 12416 isprm2lem 12438 powm2modprm 12575 coprimeprodsq 12580 pythagtriplem11 12597 pythagtriplem13 12599 pcadd2 12664 4sqlem11 12724 grpidd 13215 ismndd 13269 gsumfzz 13327 gsumwmhm 13330 mulgaddcom 13482 resghm 13596 conjnsg 13617 isrngd 13715 isringd 13803 01eq0ring 13951 lspsneq0b 14189 lmodindp1 14190 znf1o 14413 psrgrp 14447 uniopn 14473 ntrval 14582 clsval 14583 neival 14615 restdis 14656 lmbrf 14687 cnpnei 14691 dviaddf 15177 dvimulf 15178 logbgt0b 15438 perfectlem2 15472 lgslem4 15480 lgsmod 15503 lgsdir2lem2 15506 lgsdir2 15510 lgsne0 15515 lgsmulsqcoprm 15523 lgseisenlem1 15547 2lgsoddprm 15590 2sqlem4 15595 |
| Copyright terms: Public domain | W3C validator |