Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exbiri 380 bitr 464 eqtr 2183 opabss 4045 euotd 4231 wetriext 4553 sosng 4676 xpsspw 4715 brcogw 4772 funimaexglem 5270 funfni 5287 fnco 5295 fnssres 5300 fn0 5306 fnimadisj 5307 fnimaeq0 5308 foco 5419 foimacnv 5449 fvelimab 5541 fvopab3ig 5559 dff3im 5629 dffo4 5632 fmptco 5650 f1eqcocnv 5758 f1ocnv2d 6041 fnexALT 6078 xp1st 6130 xp2nd 6131 tfrlemiubacc 6294 tfri2d 6300 tfr1onlemubacc 6310 tfrcllemubacc 6323 tfri3 6331 ecelqsg 6550 elqsn0m 6565 fidifsnen 6832 recclnq 7329 nq0a0 7394 qreccl 9576 difelfzle 10065 exfzdc 10171 modifeq2int 10317 frec2uzlt2d 10335 1elfz0hash 10715 caucvgrelemcau 10918 recvalap 11035 fzomaxdiflem 11050 2zsupmax 11163 2zinfmin 11180 fsumparts 11407 ntrivcvgap 11485 divconjdvds 11783 ndvdssub 11863 zsupcllemstep 11874 rplpwr 11956 dvdssqlem 11959 eucalgcvga 11986 mulgcddvds 12022 isprm2lem 12044 powm2modprm 12180 coprimeprodsq 12185 pythagtriplem11 12202 pythagtriplem13 12204 uniopn 12599 ntrval 12710 clsval 12711 neival 12743 restdis 12784 lmbrf 12815 cnpnei 12819 dviaddf 13269 dvimulf 13270 logbgt0b 13484 lgslem4 13504 lgsmod 13527 lgsdir2lem2 13530 lgsdir2 13534 lgsne0 13539 lgsmulsqcoprm 13547 2sqlem4 13554 |
Copyright terms: Public domain | W3C validator |