| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2224 opabss 4119 euotd 4312 wetriext 4638 sosng 4761 xpsspw 4800 brcogw 4860 funimaexglem 5371 funfni 5390 fnco 5398 fnssres 5403 fn0 5410 fnimadisj 5411 fnimaeq0 5412 foco 5526 foimacnv 5557 fvelimab 5653 fvopab3ig 5671 dff3im 5743 dffo4 5746 fmptco 5764 f1eqcocnv 5878 f1ocnv2d 6168 fnexALT 6214 xp1st 6269 xp2nd 6270 tfrlemiubacc 6434 tfri2d 6440 tfr1onlemubacc 6450 tfrcllemubacc 6463 tfri3 6471 ecelqsg 6693 elqsn0m 6708 fidifsnen 6988 pr1or2 7323 recclnq 7535 nq0a0 7600 qreccl 9793 difelfzle 10286 exfzdc 10401 zsupcllemstep 10404 modifeq2int 10563 frec2uzlt2d 10581 zzlesq 10885 1elfz0hash 10983 lennncl 11046 wrdsymb0 11058 ccatsymb 11091 ccatlid 11095 ccatass 11097 ccatswrd 11156 swrdccat2 11157 ccatpfx 11187 caucvgrelemcau 11376 recvalap 11493 fzomaxdiflem 11508 2zsupmax 11622 2zinfmin 11639 fsumparts 11866 ntrivcvgap 11944 fsumdvds 12238 divconjdvds 12245 ndvdssub 12326 rplpwr 12433 dvdssqlem 12436 eucalgcvga 12465 mulgcddvds 12501 isprm2lem 12523 powm2modprm 12660 coprimeprodsq 12665 pythagtriplem11 12682 pythagtriplem13 12684 pcadd2 12749 4sqlem11 12809 grpidd 13300 ismndd 13354 gsumfzz 13412 gsumwmhm 13415 mulgaddcom 13567 resghm 13681 conjnsg 13702 isrngd 13800 isringd 13888 01eq0ring 14036 lspsneq0b 14274 lmodindp1 14275 znf1o 14498 psrgrp 14532 uniopn 14558 ntrval 14667 clsval 14668 neival 14700 restdis 14741 lmbrf 14772 cnpnei 14776 dviaddf 15262 dvimulf 15263 logbgt0b 15523 perfectlem2 15557 lgslem4 15565 lgsmod 15588 lgsdir2lem2 15591 lgsdir2 15595 lgsne0 15600 lgsmulsqcoprm 15608 lgseisenlem1 15632 2lgsoddprm 15675 2sqlem4 15680 |
| Copyright terms: Public domain | W3C validator |