| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2214 opabss 4098 euotd 4288 wetriext 4614 sosng 4737 xpsspw 4776 brcogw 4836 funimaexglem 5342 funfni 5361 fnco 5369 fnssres 5374 fn0 5380 fnimadisj 5381 fnimaeq0 5382 foco 5494 foimacnv 5525 fvelimab 5620 fvopab3ig 5638 dff3im 5710 dffo4 5713 fmptco 5731 f1eqcocnv 5841 f1ocnv2d 6131 fnexALT 6177 xp1st 6232 xp2nd 6233 tfrlemiubacc 6397 tfri2d 6403 tfr1onlemubacc 6413 tfrcllemubacc 6426 tfri3 6434 ecelqsg 6656 elqsn0m 6671 fidifsnen 6940 recclnq 7476 nq0a0 7541 qreccl 9733 difelfzle 10226 exfzdc 10333 zsupcllemstep 10336 modifeq2int 10495 frec2uzlt2d 10513 zzlesq 10817 1elfz0hash 10915 lennncl 10972 wrdsymb0 10984 caucvgrelemcau 11162 recvalap 11279 fzomaxdiflem 11294 2zsupmax 11408 2zinfmin 11425 fsumparts 11652 ntrivcvgap 11730 fsumdvds 12024 divconjdvds 12031 ndvdssub 12112 rplpwr 12219 dvdssqlem 12222 eucalgcvga 12251 mulgcddvds 12287 isprm2lem 12309 powm2modprm 12446 coprimeprodsq 12451 pythagtriplem11 12468 pythagtriplem13 12470 pcadd2 12535 4sqlem11 12595 grpidd 13085 ismndd 13139 gsumfzz 13197 gsumwmhm 13200 mulgaddcom 13352 resghm 13466 conjnsg 13487 isrngd 13585 isringd 13673 01eq0ring 13821 lspsneq0b 14059 lmodindp1 14060 znf1o 14283 psrgrp 14313 uniopn 14321 ntrval 14430 clsval 14431 neival 14463 restdis 14504 lmbrf 14535 cnpnei 14539 dviaddf 15025 dvimulf 15026 logbgt0b 15286 perfectlem2 15320 lgslem4 15328 lgsmod 15351 lgsdir2lem2 15354 lgsdir2 15358 lgsne0 15363 lgsmulsqcoprm 15371 lgseisenlem1 15395 2lgsoddprm 15438 2sqlem4 15443 |
| Copyright terms: Public domain | W3C validator |