![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2207 opabss 4082 euotd 4269 wetriext 4591 sosng 4714 xpsspw 4753 brcogw 4811 funimaexglem 5314 funfni 5331 fnco 5339 fnssres 5344 fn0 5350 fnimadisj 5351 fnimaeq0 5352 foco 5463 foimacnv 5494 fvelimab 5588 fvopab3ig 5606 dff3im 5677 dffo4 5680 fmptco 5698 f1eqcocnv 5808 f1ocnv2d 6093 fnexALT 6130 xp1st 6184 xp2nd 6185 tfrlemiubacc 6349 tfri2d 6355 tfr1onlemubacc 6365 tfrcllemubacc 6378 tfri3 6386 ecelqsg 6606 elqsn0m 6621 fidifsnen 6888 recclnq 7409 nq0a0 7474 qreccl 9660 difelfzle 10152 exfzdc 10258 modifeq2int 10404 frec2uzlt2d 10422 1elfz0hash 10804 caucvgrelemcau 11007 recvalap 11124 fzomaxdiflem 11139 2zsupmax 11252 2zinfmin 11269 fsumparts 11496 ntrivcvgap 11574 divconjdvds 11873 ndvdssub 11953 zsupcllemstep 11964 rplpwr 12046 dvdssqlem 12049 eucalgcvga 12076 mulgcddvds 12112 isprm2lem 12134 powm2modprm 12270 coprimeprodsq 12275 pythagtriplem11 12292 pythagtriplem13 12294 grpidd 12825 ismndd 12864 mulgaddcom 13052 resghm 13160 conjnsg 13181 isrngd 13268 isringd 13356 01eq0ring 13497 lspsneq0b 13704 lmodindp1 13705 uniopn 13885 ntrval 13994 clsval 13995 neival 14027 restdis 14068 lmbrf 14099 cnpnei 14103 dviaddf 14553 dvimulf 14554 logbgt0b 14768 lgslem4 14788 lgsmod 14811 lgsdir2lem2 14814 lgsdir2 14818 lgsne0 14823 lgsmulsqcoprm 14831 lgseisenlem1 14834 2sqlem4 14849 |
Copyright terms: Public domain | W3C validator |