| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpar | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exbiri 382 bitr 472 biadanid 614 eqtr 2222 opabss 4107 euotd 4298 wetriext 4624 sosng 4747 xpsspw 4786 brcogw 4846 funimaexglem 5356 funfni 5375 fnco 5383 fnssres 5388 fn0 5394 fnimadisj 5395 fnimaeq0 5396 foco 5508 foimacnv 5539 fvelimab 5634 fvopab3ig 5652 dff3im 5724 dffo4 5727 fmptco 5745 f1eqcocnv 5859 f1ocnv2d 6149 fnexALT 6195 xp1st 6250 xp2nd 6251 tfrlemiubacc 6415 tfri2d 6421 tfr1onlemubacc 6431 tfrcllemubacc 6444 tfri3 6452 ecelqsg 6674 elqsn0m 6689 fidifsnen 6966 recclnq 7504 nq0a0 7569 qreccl 9762 difelfzle 10255 exfzdc 10367 zsupcllemstep 10370 modifeq2int 10529 frec2uzlt2d 10547 zzlesq 10851 1elfz0hash 10949 lennncl 11012 wrdsymb0 11024 ccatsymb 11056 ccatlid 11060 ccatass 11062 caucvgrelemcau 11262 recvalap 11379 fzomaxdiflem 11394 2zsupmax 11508 2zinfmin 11525 fsumparts 11752 ntrivcvgap 11830 fsumdvds 12124 divconjdvds 12131 ndvdssub 12212 rplpwr 12319 dvdssqlem 12322 eucalgcvga 12351 mulgcddvds 12387 isprm2lem 12409 powm2modprm 12546 coprimeprodsq 12551 pythagtriplem11 12568 pythagtriplem13 12570 pcadd2 12635 4sqlem11 12695 grpidd 13186 ismndd 13240 gsumfzz 13298 gsumwmhm 13301 mulgaddcom 13453 resghm 13567 conjnsg 13588 isrngd 13686 isringd 13774 01eq0ring 13922 lspsneq0b 14160 lmodindp1 14161 znf1o 14384 psrgrp 14418 uniopn 14444 ntrval 14553 clsval 14554 neival 14586 restdis 14627 lmbrf 14658 cnpnei 14662 dviaddf 15148 dvimulf 15149 logbgt0b 15409 perfectlem2 15443 lgslem4 15451 lgsmod 15474 lgsdir2lem2 15477 lgsdir2 15481 lgsne0 15486 lgsmulsqcoprm 15494 lgseisenlem1 15518 2lgsoddprm 15561 2sqlem4 15566 |
| Copyright terms: Public domain | W3C validator |