Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exbiri 380 bitr 469 eqtr 2188 opabss 4053 euotd 4239 wetriext 4561 sosng 4684 xpsspw 4723 brcogw 4780 funimaexglem 5281 funfni 5298 fnco 5306 fnssres 5311 fn0 5317 fnimadisj 5318 fnimaeq0 5319 foco 5430 foimacnv 5460 fvelimab 5552 fvopab3ig 5570 dff3im 5641 dffo4 5644 fmptco 5662 f1eqcocnv 5770 f1ocnv2d 6053 fnexALT 6090 xp1st 6144 xp2nd 6145 tfrlemiubacc 6309 tfri2d 6315 tfr1onlemubacc 6325 tfrcllemubacc 6338 tfri3 6346 ecelqsg 6566 elqsn0m 6581 fidifsnen 6848 recclnq 7354 nq0a0 7419 qreccl 9601 difelfzle 10090 exfzdc 10196 modifeq2int 10342 frec2uzlt2d 10360 1elfz0hash 10741 caucvgrelemcau 10944 recvalap 11061 fzomaxdiflem 11076 2zsupmax 11189 2zinfmin 11206 fsumparts 11433 ntrivcvgap 11511 divconjdvds 11809 ndvdssub 11889 zsupcllemstep 11900 rplpwr 11982 dvdssqlem 11985 eucalgcvga 12012 mulgcddvds 12048 isprm2lem 12070 powm2modprm 12206 coprimeprodsq 12211 pythagtriplem11 12228 pythagtriplem13 12230 grpidd 12637 ismndd 12673 uniopn 12793 ntrval 12904 clsval 12905 neival 12937 restdis 12978 lmbrf 13009 cnpnei 13013 dviaddf 13463 dvimulf 13464 logbgt0b 13678 lgslem4 13698 lgsmod 13721 lgsdir2lem2 13724 lgsdir2 13728 lgsne0 13733 lgsmulsqcoprm 13741 2sqlem4 13748 |
Copyright terms: Public domain | W3C validator |