ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabt GIF version

Theorem opelopabt 4292
Description: Closed theorem form of opelopab 4302. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 4288 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 19.26-2 1493 . . . . 5 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) ↔ (∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))))
3 anim12 344 . . . . . . 7 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝜑𝜓) ∧ (𝜓𝜒))))
4 bitr 472 . . . . . . 7 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
53, 4syl6 33 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
652alimi 1467 . . . . 5 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
72, 6sylbir 135 . . . 4 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
8 copsex2t 4274 . . . 4 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
97, 8sylan 283 . . 3 (((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
1093impa 1196 . 2 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
111, 10bitrid 192 1 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1503  wcel 2164  cop 3621  {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator