ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  celarent GIF version

Theorem celarent 2113
Description: "Celarent", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and all 𝜒 is 𝜑, therefore no 𝜒 is 𝜓. (In Aristotelian notation, EAE-1: MeP and SaM therefore SeP.) For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 24-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
celarent.maj 𝑥(𝜑 → ¬ 𝜓)
celarent.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
celarent 𝑥(𝜒 → ¬ 𝜓)

Proof of Theorem celarent
StepHypRef Expression
1 celarent.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 celarent.min . 2 𝑥(𝜒𝜑)
31, 2barbara 2112 1 𝑥(𝜒 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator