| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > darii | GIF version | ||
| Description: "Darii", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AII-1: MaP and SiM therefore SiP.) For example, given "All rabbits have fur" and "Some pets are rabbits", therefore "Some pets have fur". Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 24-Aug-2016.) |
| Ref | Expression |
|---|---|
| darii.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| darii.min | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Ref | Expression |
|---|---|
| darii | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | darii.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜑) | |
| 2 | darii.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 3 | 2 | spi 1550 | . . 3 ⊢ (𝜑 → 𝜓) |
| 4 | 3 | anim2i 342 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
| 5 | 1, 4 | eximii 1616 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ferio 2146 |
| Copyright terms: Public domain | W3C validator |