ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedlem0a GIF version

Theorem dedlem0a 958
Description: Alternate version of dedlema 959. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Assertion
Ref Expression
dedlem0a (𝜑 → (𝜓 ↔ ((𝜒𝜑) → (𝜓𝜑))))

Proof of Theorem dedlem0a
StepHypRef Expression
1 iba 298 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
2 ax-1 6 . . 3 (𝜑 → (𝜒𝜑))
3 biimt 240 . . 3 ((𝜒𝜑) → ((𝜓𝜑) ↔ ((𝜒𝜑) → (𝜓𝜑))))
42, 3syl 14 . 2 (𝜑 → ((𝜓𝜑) ↔ ((𝜒𝜑) → (𝜓𝜑))))
51, 4bitrd 187 1 (𝜑 → (𝜓 ↔ ((𝜒𝜑) → (𝜓𝜑))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator