![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iba | GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) (Revised by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
iba | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 264 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
3 | 1, 2 | impbid1 142 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biantru 302 biantrud 304 ancrb 322 rbaibd 924 dedlem0a 968 fvopab6 5614 fressnfv 5705 tpostpos 6267 nnmword 6521 unfiexmid 6919 ltmpig 7340 mul0eqap 8629 sup3exmid 8916 xrmaxiflemcom 11259 |
Copyright terms: Public domain | W3C validator |