| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimt | GIF version | ||
| Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| biimt | ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 2 | pm2.27 40 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 143 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.5 242 a1bi 243 abai 560 dedlem0a 970 ceqsralt 2790 reu8 2960 csbiebt 3124 r19.3rm 3539 fncnv 5324 ovmpodxf 6048 brecop 6684 tgss2 14315 |
| Copyright terms: Public domain | W3C validator |