ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimt GIF version

Theorem biimt 240
Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
Assertion
Ref Expression
biimt (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem biimt
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
2 pm2.27 40 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
31, 2impbid2 142 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.5  241  a1bi  242  abai  555  dedlem0a  963  ceqsralt  2757  reu8  2926  csbiebt  3088  r19.3rm  3503  fncnv  5264  ovmpodxf  5978  brecop  6603  tgss2  12873
  Copyright terms: Public domain W3C validator