Detailed syntax breakdown of Definition df-bases
Step | Hyp | Ref
| Expression |
1 | | ctb 12834 |
. 2
class
TopBases |
2 | | vy |
. . . . . . . 8
setvar 𝑦 |
3 | 2 | cv 1347 |
. . . . . . 7
class 𝑦 |
4 | | vz |
. . . . . . . 8
setvar 𝑧 |
5 | 4 | cv 1347 |
. . . . . . 7
class 𝑧 |
6 | 3, 5 | cin 3120 |
. . . . . 6
class (𝑦 ∩ 𝑧) |
7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
8 | 7 | cv 1347 |
. . . . . . . 8
class 𝑥 |
9 | 6 | cpw 3566 |
. . . . . . . 8
class 𝒫
(𝑦 ∩ 𝑧) |
10 | 8, 9 | cin 3120 |
. . . . . . 7
class (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
11 | 10 | cuni 3796 |
. . . . . 6
class ∪ (𝑥
∩ 𝒫 (𝑦 ∩
𝑧)) |
12 | 6, 11 | wss 3121 |
. . . . 5
wff (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
13 | 12, 4, 8 | wral 2448 |
. . . 4
wff
∀𝑧 ∈
𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
14 | 13, 2, 8 | wral 2448 |
. . 3
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) |
15 | 14, 7 | cab 2156 |
. 2
class {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
16 | 1, 15 | wceq 1348 |
1
wff TopBases =
{𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |