Detailed syntax breakdown of Definition df-bases
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ctb 14278 | 
. 2
class
TopBases | 
| 2 |   | vy | 
. . . . . . . 8
setvar 𝑦 | 
| 3 | 2 | cv 1363 | 
. . . . . . 7
class 𝑦 | 
| 4 |   | vz | 
. . . . . . . 8
setvar 𝑧 | 
| 5 | 4 | cv 1363 | 
. . . . . . 7
class 𝑧 | 
| 6 | 3, 5 | cin 3156 | 
. . . . . 6
class (𝑦 ∩ 𝑧) | 
| 7 |   | vx | 
. . . . . . . . 9
setvar 𝑥 | 
| 8 | 7 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 9 | 6 | cpw 3605 | 
. . . . . . . 8
class 𝒫
(𝑦 ∩ 𝑧) | 
| 10 | 8, 9 | cin 3156 | 
. . . . . . 7
class (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) | 
| 11 | 10 | cuni 3839 | 
. . . . . 6
class ∪ (𝑥
∩ 𝒫 (𝑦 ∩
𝑧)) | 
| 12 | 6, 11 | wss 3157 | 
. . . . 5
wff (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) | 
| 13 | 12, 4, 8 | wral 2475 | 
. . . 4
wff
∀𝑧 ∈
𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) | 
| 14 | 13, 2, 8 | wral 2475 | 
. . 3
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) | 
| 15 | 14, 7 | cab 2182 | 
. 2
class {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | 
| 16 | 1, 15 | wceq 1364 | 
1
wff TopBases =
{𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |