ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbasisg GIF version

Theorem isbasisg 14560
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasisg (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem isbasisg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3368 . . . . . 6 (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
21unieqd 3863 . . . . 5 (𝑧 = 𝐵 (𝑧 ∩ 𝒫 (𝑥𝑦)) = (𝐵 ∩ 𝒫 (𝑥𝑦)))
32sseq2d 3224 . . . 4 (𝑧 = 𝐵 → ((𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
43raleqbi1dv 2715 . . 3 (𝑧 = 𝐵 → (∀𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
54raleqbi1dv 2715 . 2 (𝑧 = 𝐵 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
6 df-bases 14559 . 2 TopBases = {𝑧 ∣ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ⊆ (𝑧 ∩ 𝒫 (𝑥𝑦))}
75, 6elab2g 2921 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wral 2485  cin 3166  wss 3167  𝒫 cpw 3617   cuni 3852  TopBasesctb 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-bases 14559
This theorem is referenced by:  isbasis2g  14561  basis1  14563  baspartn  14566
  Copyright terms: Public domain W3C validator