![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isbasisg | GIF version |
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasisg | ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3331 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
2 | 1 | unieqd 3822 | . . . . 5 ⊢ (𝑧 = 𝐵 → ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
3 | 2 | sseq2d 3187 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
4 | 3 | raleqbi1dv 2681 | . . 3 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
5 | 4 | raleqbi1dv 2681 | . 2 ⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
6 | df-bases 13628 | . 2 ⊢ TopBases = {𝑧 ∣ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦))} | |
7 | 5, 6 | elab2g 2886 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∩ cin 3130 ⊆ wss 3131 𝒫 cpw 3577 ∪ cuni 3811 TopBasesctb 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-in 3137 df-ss 3144 df-uni 3812 df-bases 13628 |
This theorem is referenced by: isbasis2g 13630 basis1 13632 baspartn 13635 |
Copyright terms: Public domain | W3C validator |