| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isbasisg | GIF version | ||
| Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| isbasisg | ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 3368 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) | |
| 2 | 1 | unieqd 3863 | . . . . 5 ⊢ (𝑧 = 𝐵 → ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) = ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 3 | 2 | sseq2d 3224 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 4 | 3 | raleqbi1dv 2715 | . . 3 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 5 | 4 | raleqbi1dv 2715 | . 2 ⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 6 | df-bases 14559 | . 2 ⊢ TopBases = {𝑧 ∣ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑧 ∩ 𝒫 (𝑥 ∩ 𝑦))} | |
| 7 | 5, 6 | elab2g 2921 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∩ cin 3166 ⊆ wss 3167 𝒫 cpw 3617 ∪ cuni 3852 TopBasesctb 14558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-bases 14559 |
| This theorem is referenced by: isbasis2g 14561 basis1 14563 baspartn 14566 |
| Copyright terms: Public domain | W3C validator |