ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbasis2g GIF version

Theorem isbasis2g 14684
Description: Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
isbasis2g (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem isbasis2g
StepHypRef Expression
1 isbasisg 14683 . 2 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
2 dfss3 3193 . . . 4 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)))
3 elin 3367 . . . . . . . . . 10 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)))
4 velpw 3636 . . . . . . . . . . 11 (𝑤 ∈ 𝒫 (𝑥𝑦) ↔ 𝑤 ⊆ (𝑥𝑦))
54anbi2i 457 . . . . . . . . . 10 ((𝑤𝐵𝑤 ∈ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
63, 5bitri 184 . . . . . . . . 9 (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ (𝑤𝐵𝑤 ⊆ (𝑥𝑦)))
76anbi2i 457 . . . . . . . 8 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))))
8 an12 561 . . . . . . . 8 ((𝑧𝑤 ∧ (𝑤𝐵𝑤 ⊆ (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
97, 8bitri 184 . . . . . . 7 ((𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ (𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109exbii 1631 . . . . . 6 (∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 eluni 3870 . . . . . 6 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥𝑦))))
12 df-rex 2494 . . . . . 6 (∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ ∃𝑤(𝑤𝐵 ∧ (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1310, 11, 123bitr4i 212 . . . . 5 (𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1413ralbii 2516 . . . 4 (∀𝑧 ∈ (𝑥𝑦)𝑧 (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
152, 14bitri 184 . . 3 ((𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
16152ralbii 2518 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦)) ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
171, 16bitrdi 196 1 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1518  wcel 2180  wral 2488  wrex 2489  cin 3176  wss 3177  𝒫 cpw 3629   cuni 3867  TopBasesctb 14681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631  df-uni 3868  df-bases 14682
This theorem is referenced by:  isbasis3g  14685  basis2  14687  fiinbas  14688  tgclb  14704  topbas  14706  restbasg  14807  txbas  14897  blbas  15072
  Copyright terms: Public domain W3C validator