Proof of Theorem isbasis2g
Step | Hyp | Ref
| Expression |
1 | | isbasisg 12836 |
. 2
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
2 | | dfss3 3137 |
. . . 4
⊢ ((𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑧 ∈ (𝑥 ∩ 𝑦)𝑧 ∈ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
3 | | elin 3310 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝒫 (𝑥 ∩ 𝑦))) |
4 | | velpw 3573 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝒫 (𝑥 ∩ 𝑦) ↔ 𝑤 ⊆ (𝑥 ∩ 𝑦)) |
5 | 4 | anbi2i 454 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
6 | 3, 5 | bitri 183 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
7 | 6 | anbi2i 454 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) ↔ (𝑧 ∈ 𝑤 ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
8 | | an12 556 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑤 ∧ (𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) ↔ (𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
9 | 7, 8 | bitri 183 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) ↔ (𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
10 | 9 | exbii 1598 |
. . . . . 6
⊢
(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦))) ↔ ∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
11 | | eluni 3799 |
. . . . . 6
⊢ (𝑧 ∈ ∪ (𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
12 | | df-rex 2454 |
. . . . . 6
⊢
(∃𝑤 ∈
𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)) ↔ ∃𝑤(𝑤 ∈ 𝐵 ∧ (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
13 | 10, 11, 12 | 3bitr4i 211 |
. . . . 5
⊢ (𝑧 ∈ ∪ (𝐵
∩ 𝒫 (𝑥 ∩
𝑦)) ↔ ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
14 | 13 | ralbii 2476 |
. . . 4
⊢
(∀𝑧 ∈
(𝑥 ∩ 𝑦)𝑧 ∈ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
15 | 2, 14 | bitri 183 |
. . 3
⊢ ((𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
16 | 15 | 2ralbii 2478 |
. 2
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
17 | 1, 16 | bitrdi 195 |
1
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |