Detailed syntax breakdown of Definition df-fbas
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cfbas 14095 | 
. 2
class
fBas | 
| 2 |   | vw | 
. . 3
setvar 𝑤 | 
| 3 |   | cvv 2763 | 
. . 3
class
V | 
| 4 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 5 | 4 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 6 |   | c0 3450 | 
. . . . . 6
class
∅ | 
| 7 | 5, 6 | wne 2367 | 
. . . . 5
wff 𝑥 ≠ ∅ | 
| 8 | 6, 5 | wnel 2462 | 
. . . . 5
wff ∅
∉ 𝑥 | 
| 9 |   | vy | 
. . . . . . . . . . . 12
setvar 𝑦 | 
| 10 | 9 | cv 1363 | 
. . . . . . . . . . 11
class 𝑦 | 
| 11 |   | vz | 
. . . . . . . . . . . 12
setvar 𝑧 | 
| 12 | 11 | cv 1363 | 
. . . . . . . . . . 11
class 𝑧 | 
| 13 | 10, 12 | cin 3156 | 
. . . . . . . . . 10
class (𝑦 ∩ 𝑧) | 
| 14 | 13 | cpw 3605 | 
. . . . . . . . 9
class 𝒫
(𝑦 ∩ 𝑧) | 
| 15 | 5, 14 | cin 3156 | 
. . . . . . . 8
class (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) | 
| 16 | 15, 6 | wne 2367 | 
. . . . . . 7
wff (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅ | 
| 17 | 16, 11, 5 | wral 2475 | 
. . . . . 6
wff
∀𝑧 ∈
𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅ | 
| 18 | 17, 9, 5 | wral 2475 | 
. . . . 5
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅ | 
| 19 | 7, 8, 18 | w3a 980 | 
. . . 4
wff (𝑥 ≠ ∅ ∧ ∅
∉ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅) | 
| 20 | 2 | cv 1363 | 
. . . . . 6
class 𝑤 | 
| 21 | 20 | cpw 3605 | 
. . . . 5
class 𝒫
𝑤 | 
| 22 | 21 | cpw 3605 | 
. . . 4
class 𝒫
𝒫 𝑤 | 
| 23 | 19, 4, 22 | crab 2479 | 
. . 3
class {𝑥 ∈ 𝒫 𝒫
𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅
∉ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)} | 
| 24 | 2, 3, 23 | cmpt 4094 | 
. 2
class (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫
𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅
∉ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) | 
| 25 | 1, 24 | wceq 1364 | 
1
wff fBas =
(𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫
𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅
∉ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) |