HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-sgrp 13401* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 13355), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
 
Theoremissgrp 13402* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
 
Theoremissgrpv 13403* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremissgrpn0 13404* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremisnsgrp 13405 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))
 
Theoremsgrpmgm 13406 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
(𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
 
Theoremsgrpass 13407 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
 
Theoremsgrpcl 13408 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremsgrp0 13409 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp)
 
Theoremsgrp1 13410 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Smgrp)
 
Theoremissgrpd 13411* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝐺𝑉)       (𝜑𝐺 ∈ Smgrp)
 
Theoremsgrppropd 13412* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
(𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   (𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
 
Theoremprdsplusgsgrpcl 13413 Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Smgrp)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
 
Theoremprdssgrpd 13414 The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Smgrp)       (𝜑𝑌 ∈ Smgrp)
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 13416, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13418. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 13415 Extend class notation with class of all monoids.
class Mnd
 
Definitiondf-mnd 13416* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13422), whose operation is associative (see mndass 13423) and has a two-sided neutral element (see mndid 13424), see also ismnd 13418. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
 
Theoremismnddef 13417* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremismnd 13418* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13422), whose operation is associative (so, a semigroup, see also mndass 13423) and has a two-sided neutral element (see mndid 13424). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremsgrpidmndm 13419* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
 
Theoremmndsgrp 13420 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
 
Theoremmndmgm 13421 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
 
Theoremmndcl 13422 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndass 13423 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremmndid 13424* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmndideu 13425* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmnd32g 13426 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremmnd12g 13427 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremmnd4g 13428 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremmndidcl 13429 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Mnd → 0𝐵)
 
Theoremmndbn0 13430 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13429). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
 
Theoremhashfinmndnn 13431 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → (♯‘𝐵) ∈ ℕ)
 
Theoremmndplusf 13432 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremmndlrid 13433 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremmndlid 13434 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremmndrid 13435 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremismndd 13436* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑𝐺 ∈ Mnd)
 
Theoremmndpfo 13437 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndfo 13438 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndpropd 13439* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
 
Theoremmndprop 13440 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
 
Theoremissubmnd 13441* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 
Theoremress0g 13442 0g is unaffected by restriction. This is a bit more generic than submnd0 13443. (Contributed by Thierry Arnoux, 23-Oct-2017.)
𝑆 = (𝑅s 𝐴)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
 
Theoremsubmnd0 13443 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
 
Theoremmndinvmod 13444* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
 
Theoremprdsplusgcl 13445 Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Mnd)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
 
Theoremprdsidlem 13446* Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Mnd)    &    0 = (0g𝑅)       (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
 
Theoremprdsmndd 13447 The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Mnd)       (𝜑𝑌 ∈ Mnd)
 
Theoremprds0g 13448 The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Mnd)       (𝜑 → (0g𝑅) = (0g𝑌))
 
Theorempwsmnd 13449 The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)       ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 ∈ Mnd)
 
Theorempws0g 13450 The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))
 
Theoremimasmnd2 13451* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅𝑊)    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))    &   ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))       (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasmnd 13452* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Mnd)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasmndf1 13453 The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑈 ∈ Mnd)
 
Theoremmnd1 13454 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mnd)
 
Theoremmnd1id 13455 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (0g𝑀) = 𝐼)
 
7.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 13456 Hom-set generator class for monoids.
class MndHom
 
Syntaxcsubmnd 13457 Class function taking a monoid to its lattice of submonoids.
class SubMnd
 
Definitiondf-mhm 13458* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
 
Definitiondf-submnd 13459* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
 
Theoremismhm 13460* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &    0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
 
Theoremmhmex 13461 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)
 
Theoremmhmrcl1 13462 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
 
Theoremmhmrcl2 13463 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
 
Theoremmhmf 13464 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
 
Theoremmhmpropd 13465* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))       (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
 
Theoremmhmlin 13466 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
 
Theoremmhm0 13467 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
 
Theoremidmhm 13468 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
 
Theoremmhmf1o 13469 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
 
Theoremsubmrcl 13470 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
 
Theoremissubm 13471* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &    + = (+g𝑀)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
 
Theoremissubm2 13472 Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐻 = (𝑀s 𝑆)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
 
Theoremissubmd 13473* Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &    0 = (0g𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝜒)    &   ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)    &   (𝑧 = 0 → (𝜓𝜒))    &   (𝑧 = 𝑥 → (𝜓𝜃))    &   (𝑧 = 𝑦 → (𝜓𝜏))    &   (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))       (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
 
Theoremmndissubm 13474 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
 
Theoremsubmss 13475 Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)
 
Theoremsubmid 13476 Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀))
 
Theoremsubm0cl 13477 Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0𝑆)
 
Theoremsubmcl 13478 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
+ = (+g𝑀)       ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
 
Theoremsubmmnd 13479 Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 ∈ Mnd)
 
Theoremsubmbas 13480 The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻))
 
Theoremsubm0 13481 Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)    &    0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0 = (0g𝐻))
 
Theoremsubsubm 13482 A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
 
Theorem0subm 13483 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
0 = (0g𝐺)       (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
 
Theoreminsubm 13484 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀))
 
Theorem0mhm 13485 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
0 = (0g𝑁)    &   𝐵 = (Base‘𝑀)       ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
 
Theoremresmhm 13486 Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
𝑈 = (𝑆s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
 
Theoremresmhm2 13487 One direction of resmhm2b 13488. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremresmhm2b 13488 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
 
Theoremmhmco 13489 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
 
Theoremmhmima 13490 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))
 
Theoremmhmeql 13491 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
 
7.1.7  Iterated sums in a monoid

One important use of words is as formal composites in cases where order is significant, using the general sum operator df-igsum 13258. If order is not significant, it is simpler to use families instead.

 
Theoremgsumvallem2 13492* Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺 ∈ Mnd → 𝑂 = { 0 })
 
Theoremgsumsubm 13493 Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:𝐴𝑆)    &   𝐻 = (𝐺s 𝑆)       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumfzz 13494* Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
 
Theoremgsumwsubmcl 13495 Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
 
Theoremgsumwcl 13496 Closure of the composite of a word in a structure 𝐺. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
 
Theoremgsumwmhm 13497 Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
𝐵 = (Base‘𝑀)       ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
 
Theoremgsumfzcl 13498 Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 16-Aug-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
 
7.2  Groups
 
7.2.1  Definition and basic properties
 
Syntaxcgrp 13499 Extend class notation with class of all groups.
class Grp
 
Syntaxcminusg 13500 Extend class notation with inverse of group element.
class invg
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >