HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremresgrpisgrp 13401 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝐺s 𝑆) ∈ Grp))
 
Theoremsubgsubm 13402 A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
 
Theoremsubsubg 13403 A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
 
Theoremsubgintm 13404* The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
 
Theorem0subg 13405 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
0 = (0g𝐺)       (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
 
Theoremtrivsubgd 13406 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })    &   (𝜑𝐴 ∈ (SubGrp‘𝐺))       (𝜑𝐴 = 𝐵)
 
Theoremtrivsubgsnd 13407 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (SubGrp‘𝐺) = {𝐵})
 
Theoremisnsg 13408* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
 
Theoremisnsg2 13409* Weaken the condition of isnsg 13408 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
 
Theoremnsgbi 13410 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
 
Theoremnsgsubg 13411 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
(𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
 
Theoremnsgconj 13412 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
 
Theoremisnsg3 13413* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
 
Theoremelnmz 13414* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}       (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
 
Theoremnmzbi 13415* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}       ((𝐴𝑁𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
 
Theoremnmzsubg 13416* The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
 
Theoremssnmz 13417* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
 
Theoremisnsg4 13418* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋))
 
Theoremnmznsg 13419* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑁)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
 
Theorem0nsg 13420 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
0 = (0g𝐺)       (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
 
Theoremnsgid 13421 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
 
Theorem0idnsgd 13422 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)       (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺))
 
Theoremtrivnsgd 13423 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) = {𝐵})
 
Theoremtriv1nsgd 13424 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
 
Theorem1nsgtrivd 13425 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)       (𝜑𝐵 = { 0 })
 
Theoremreleqgg 13426 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
 
Theoremeqgex 13427 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
((𝐺𝑉𝑆𝑊) → (𝐺 ~QG 𝑆) ∈ V)
 
Theoremeqgfval 13428* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
 
Theoremeqgval 13429 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
 
Theoremeqger 13430 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
 
Theoremeqglact 13431* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
 
Theoremeqgid 13432 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    0 = (0g𝐺)       (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
 
Theoremeqgen 13433 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
 
Theoremeqgcpbl 13434 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
 
Theoremeqg0el 13435 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
= (𝐺 ~QG 𝐻)       ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
 
Theoremquselbasg 13436* Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
= (𝐺 ~QG 𝑆)    &   𝑈 = (𝐺 /s )    &   𝐵 = (Base‘𝐺)       ((𝐺𝑉𝑋𝑊𝑆𝑍) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
 
Theoremquseccl0g 13437 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13439 for arbitrary sets 𝐺. (Revised by AV, 24-Feb-2025.)
= (𝐺 ~QG 𝑆)    &   𝐻 = (𝐺 /s )    &   𝐶 = (Base‘𝐺)    &   𝐵 = (Base‘𝐻)       ((𝐺𝑉𝑋𝐶𝑆𝑍) → [𝑋] 𝐵)
 
Theoremqusgrp 13438 If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))       (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
 
Theoremquseccl 13439 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   𝑉 = (Base‘𝐺)    &   𝐵 = (Base‘𝐻)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵)
 
Theoremqusadd 13440 Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   𝑉 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+g𝐻)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))
 
Theoremqus0 13441 Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &    0 = (0g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))
 
Theoremqusinv 13442 Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   𝑉 = (Base‘𝐺)    &   𝐼 = (invg𝐺)    &   𝑁 = (invg𝐻)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))
 
Theoremqussub 13443 Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   𝑉 = (Base‘𝐺)    &    = (-g𝐺)    &   𝑁 = (-g𝐻)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
 
Theoremecqusaddd 13444 Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
(𝜑𝐼 ∈ (NrmSGrp‘𝑅))    &   𝐵 = (Base‘𝑅)    &    = (𝑅 ~QG 𝐼)    &   𝑄 = (𝑅 /s )       ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
 
Theoremecqusaddcl 13445 Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
(𝜑𝐼 ∈ (NrmSGrp‘𝑅))    &   𝐵 = (Base‘𝑅)    &    = (𝑅 ~QG 𝐼)    &   𝑄 = (𝑅 /s )       ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) ∈ (Base‘𝑄))
 
7.2.4  Elementary theory of group homomorphisms
 
Syntaxcghm 13446 Extend class notation with the generator of group hom-sets.
class GrpHom
 
Definitiondf-ghm 13447* A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
 
Theoremreldmghm 13448 Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Rel dom GrpHom
 
Theoremisghm 13449* Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Base‘𝑆)    &   𝑌 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)       (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
 
Theoremisghm3 13450* Property of a group homomorphism, similar to ismhm 13163. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝑋 = (Base‘𝑆)    &   𝑌 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
 
Theoremghmgrp1 13451 A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
 
Theoremghmgrp2 13452 A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
 
Theoremghmf 13453 A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Base‘𝑆)    &   𝑌 = (Base‘𝑇)       (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
 
Theoremghmlin 13454 A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑋 = (Base‘𝑆)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
 
Theoremghmid 13455 A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑌 = (0g𝑆)    &    0 = (0g𝑇)       (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )
 
Theoremghminv 13456 A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐵 = (Base‘𝑆)    &   𝑀 = (invg𝑆)    &   𝑁 = (invg𝑇)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
 
Theoremghmsub 13457 Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐵 = (Base‘𝑆)    &    = (-g𝑆)    &   𝑁 = (-g𝑇)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))
 
Theoremisghmd 13458* Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
𝑋 = (Base‘𝑆)    &   𝑌 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &   (𝜑𝑆 ∈ Grp)    &   (𝜑𝑇 ∈ Grp)    &   (𝜑𝐹:𝑋𝑌)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))       (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
 
Theoremghmmhm 13459 A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremghmmhmb 13460 Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
 
Theoremghmex 13461 The set of group homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) ∈ V)
 
Theoremghmmulg 13462 A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    × = (.g𝐻)       ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
 
Theoremghmrn 13463 The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
(𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
 
Theorem0ghm 13464 The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
0 = (0g𝑁)    &   𝐵 = (Base‘𝑀)       ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
 
Theoremidghm 13465 The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
 
Theoremresghm 13466 Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝑈 = (𝑆s 𝑋)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
 
Theoremresghm2 13467 One direction of resghm2b 13468. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
 
Theoremresghm2b 13468 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
 
Theoremghmghmrn 13469 A group homomorphism from 𝐺 to 𝐻 is also a group homomorphism from 𝐺 to its image in 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
𝑈 = (𝑇s ran 𝐹)       (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
 
Theoremghmco 13470 The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
 
Theoremghmima 13471 The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
 
Theoremghmpreima 13472 The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
 
Theoremghmeql 13473 The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
 
Theoremghmnsgima 13474 The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑌 = (Base‘𝑇)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹𝑈) ∈ (NrmSGrp‘𝑇))
 
Theoremghmnsgpreima 13475 The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (𝐹𝑉) ∈ (NrmSGrp‘𝑆))
 
Theoremghmker 13476 The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
0 = (0g𝑇)       (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆))
 
Theoremghmeqker 13477 Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
𝐵 = (Base‘𝑆)    &    0 = (0g𝑇)    &   𝐾 = (𝐹 “ { 0 })    &    = (-g𝑆)       ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))
 
Theoremf1ghm0to0 13478 If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑅)    &    0 = (0g𝑆)       ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 0𝑋 = 𝑁))
 
Theoremghmf1 13479* Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑅)    &    0 = (0g𝑆)       (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
 
Theoremkerf1ghm 13480 A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
𝐴 = (Base‘𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑁 = (0g𝑅)    &    0 = (0g𝑆)       (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ (𝐹 “ { 0 }) = {𝑁}))
 
Theoremghmf1o 13481 A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝑆)    &   𝑌 = (Base‘𝑇)       (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
 
Theoremconjghm 13482* Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))       ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋1-1-onto𝑋))
 
Theoremconjsubg 13483* A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
 
Theoremconjsubgen 13484* A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
 
Theoremconjnmz 13485* A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))    &   𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
 
Theoremconjnmzb 13486* Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))    &   𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}       (𝑆 ∈ (SubGrp‘𝐺) → (𝐴𝑁 ↔ (𝐴𝑋𝑆 = ran 𝐹)))
 
Theoremconjnsg 13487* A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 = ran 𝐹)
 
Theoremqusghm 13488* If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
𝑋 = (Base‘𝐺)    &   𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))       (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
 
Theoremghmpropd 13489* Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))       (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
 
7.2.5  Abelian groups
 
7.2.5.1  Definition and basic properties
 
Syntaxccmn 13490 Extend class notation with class of all commutative monoids.
class CMnd
 
Syntaxcabl 13491 Extend class notation with class of all Abelian groups.
class Abel
 
Definitiondf-cmn 13492* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g𝑔)𝑏) = (𝑏(+g𝑔)𝑎)}
 
Definitiondf-abl 13493 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Abel = (Grp ∩ CMnd)
 
Theoremisabl 13494 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
(𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
 
Theoremablgrp 13495 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
(𝐺 ∈ Abel → 𝐺 ∈ Grp)
 
Theoremablgrpd 13496 An Abelian group is a group, deduction form of ablgrp 13495. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ Grp)
 
Theoremablcmn 13497 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ Abel → 𝐺 ∈ CMnd)
 
Theoremablcmnd 13498 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ CMnd)
 
Theoremiscmn 13499* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
 
Theoremisabl2 13500* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >