HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsincos4thpi 13401 The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
 
Theoremtan4thpi 13402 The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.)
(tan‘(π / 4)) = 1
 
Theoremsincos6thpi 13403 The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
 
Theoremsincos3rdpi 13404 The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.)
((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
 
Theorempigt3 13405 π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
3 < π
 
Theorempige3 13406 π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.)
3 ≤ π
 
Theoremabssinper 13407 The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
 
Theoremsinkpi 13408 The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.)
(𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0)
 
Theoremcoskpi 13409 The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.)
(𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1)
 
Theoremcosordlem 13410 Cosine is decreasing over the closed interval from 0 to π. (Contributed by Mario Carneiro, 10-May-2014.)
(𝜑𝐴 ∈ (0[,]π))    &   (𝜑𝐵 ∈ (0[,]π))    &   (𝜑𝐴 < 𝐵)       (𝜑 → (cos‘𝐵) < (cos‘𝐴))
 
Theoremcosq34lt1 13411 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
 
Theoremcos02pilt1 13412 Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
 
Theoremcos0pilt1 13413 Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.)
(𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1))
 
Theoremcos11 13414 Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵)))
 
Theoremioocosf1o 13415 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
(cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
 
Theoremnegpitopissre 13416 The interval (-π(,]π) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
(-π(,]π) ⊆ ℝ
 
10.1.3  The natural logarithm on complex numbers
 
Syntaxclog 13417 Extend class notation with the natural logarithm function on complex numbers.
class log
 
Syntaxccxp 13418 Extend class notation with the complex power function.
class 𝑐
 
Definitiondf-relog 13419 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
log = (exp ↾ ℝ)
 
Definitiondf-rpcxp 13420* Define the power function on complex numbers. Because df-relog 13419 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
𝑐 = (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (exp‘(𝑦 · (log‘𝑥))))
 
Theoremdfrelog 13421 The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
(log ↾ ℝ+) = (exp ↾ ℝ)
 
Theoremrelogf1o 13422 The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.)
(log ↾ ℝ+):ℝ+1-1-onto→ℝ
 
Theoremrelogcl 13423 Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
 
Theoremreeflog 13424 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
 
Theoremrelogef 13425 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴)
 
Theoremrelogeftb 13426 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴))
 
Theoremlog1 13427 The natural logarithm of 1. One case of Property 1a of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(log‘1) = 0
 
Theoremloge 13428 The natural logarithm of e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(log‘e) = 1
 
Theoremrelogoprlem 13429 Lemma for relogmul 13430 and relogdiv 13431. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.)
(((log‘𝐴) ∈ ℂ ∧ (log‘𝐵) ∈ ℂ) → (exp‘((log‘𝐴)𝐹(log‘𝐵))) = ((exp‘(log‘𝐴))𝐺(exp‘(log‘𝐵))))    &   (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴)𝐹(log‘𝐵)) ∈ ℝ)       ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (log‘(𝐴𝐺𝐵)) = ((log‘𝐴)𝐹(log‘𝐵)))
 
Theoremrelogmul 13430 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
 
Theoremrelogdiv 13431 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵)))
 
Theoremreexplog 13432 Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
 
Theoremrelogexp 13433 The natural logarithm of positive 𝐴 raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers 𝑁. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (log‘(𝐴𝑁)) = (𝑁 · (log‘𝐴)))
 
Theoremrelogiso 13434 The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
(log ↾ ℝ+) Isom < , < (ℝ+, ℝ)
 
Theoremlogltb 13435 The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵)))
 
Theoremlogleb 13436 Natural logarithm preserves . (Contributed by Stefan O'Rear, 19-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵)))
 
Theoremlogrpap0b 13437 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
(𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (log‘𝐴) # 0))
 
Theoremlogrpap0 13438 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
((𝐴 ∈ ℝ+𝐴 # 1) → (log‘𝐴) # 0)
 
Theoremlogrpap0d 13439 Deduction form of logrpap0 13438. (Contributed by Jim Kingdon, 3-Jul-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐴 # 1)       (𝜑 → (log‘𝐴) # 0)
 
Theoremrplogcl 13440 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
 
Theoremlogge0 13441 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
 
Theoremlogdivlti 13442 The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
 
Theoremrelogcld 13443 Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (log‘𝐴) ∈ ℝ)
 
Theoremreeflogd 13444 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
 
Theoremrelogmuld 13445 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
 
Theoremrelogdivd 13446 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵)))
 
Theoremlogled 13447 Natural logarithm preserves . (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵)))
 
Theoremrelogefd 13448 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (log‘(exp‘𝐴)) = 𝐴)
 
Theoremrplogcld 13449 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → (log‘𝐴) ∈ ℝ+)
 
Theoremlogge0d 13450 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)       (𝜑 → 0 ≤ (log‘𝐴))
 
Theoremlogge0b 13451 The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴))
 
Theoremloggt0b 13452 The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴))
 
Theoremlogle1b 13453 The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e))
 
Theoremloglt1b 13454 The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e))
 
Theoremrpcxpef 13455 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
 
Theoremcxpexprp 13456 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremcxpexpnn 13457 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremlogcxp 13458 Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremrpcxp0 13459 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐0) = 1)
 
Theoremrpcxp1 13460 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℝ+ → (𝐴𝑐1) = 𝐴)
 
Theorem1cxp 13461 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1)
 
Theoremecxp 13462 Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴))
 
Theoremrpcncxpcl 13463 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremrpcxpcl 13464 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremcxpap0 13465 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) # 0)
 
Theoremrpcxpadd 13466 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 + 𝐶)) = ((𝐴𝑐𝐵) · (𝐴𝑐𝐶)))
 
Theoremrpcxpp1 13467 Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 + 1)) = ((𝐴𝑐𝐵) · 𝐴))
 
Theoremrpcxpneg 13468 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐-𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpcxpsub 13469 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵𝐶)) = ((𝐴𝑐𝐵) / (𝐴𝑐𝐶)))
 
Theoremrpmulcxp 13470 Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
 
Theoremcxprec 13471 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpdivcxp 13472 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 
Theoremcxpmul 13473 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremrpcxproot 13474 The complex power function allows us to write n-th roots via the idiom 𝐴𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.)
((𝐴 ∈ ℝ+𝑁 ∈ ℕ) → ((𝐴𝑐(1 / 𝑁))↑𝑁) = 𝐴)
 
Theoremabscxp 13475 Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (𝐴𝑐(ℜ‘𝐵)))
 
Theoremcxplt 13476 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxple 13477 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremrpcxple2 13478 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
 
Theoremrpcxplt2 13479 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))
 
Theoremcxplt3 13480 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3 13481 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremrpcxpsqrt 13482 The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
 
Theoremlogsqrt 13483 Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.)
(𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2))
 
Theoremrpcxp0d 13484 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴𝑐0) = 1)
 
Theoremrpcxp1d 13485 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴𝑐1) = 𝐴)
 
Theorem1cxpd 13486 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1↑𝑐𝐴) = 1)
 
Theoremrpcncxpcld 13487 Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremcxpltd 13488 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxpled 13489 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremrpcxpsqrtth 13490 Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 10973. (Contributed by AV, 23-Dec-2022.)
(𝐴 ∈ ℝ+ → ((√‘𝐴)↑𝑐2) = 𝐴)
 
Theoremcxprecd 13491 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpcxpcld 13492 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremlogcxpd 13493 Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremcxplt3d 13494 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3d 13495 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremcxpmuld 13496 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremcxpcom 13497 Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝑐𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶)↑𝑐𝐵))
 
Theoremapcxp2 13498 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
(((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴𝑐𝐵) # (𝐴𝑐𝐶)))
 
Theoremrpabscxpbnd 13499 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → 0 < (ℜ‘𝐵))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) ≤ 𝑀)       (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
 
Theoremltexp2 13500 Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
(((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >