Detailed syntax breakdown of Definition df-fg
Step | Hyp | Ref
| Expression |
1 | | cfg 12778 |
. 2
class
filGen |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | vx |
. . 3
setvar 𝑥 |
4 | | cvv 2730 |
. . 3
class
V |
5 | 2 | cv 1347 |
. . . 4
class 𝑤 |
6 | | cfbas 12777 |
. . . 4
class
fBas |
7 | 5, 6 | cfv 5198 |
. . 3
class
(fBas‘𝑤) |
8 | 3 | cv 1347 |
. . . . . 6
class 𝑥 |
9 | | vy |
. . . . . . . 8
setvar 𝑦 |
10 | 9 | cv 1347 |
. . . . . . 7
class 𝑦 |
11 | 10 | cpw 3566 |
. . . . . 6
class 𝒫
𝑦 |
12 | 8, 11 | cin 3120 |
. . . . 5
class (𝑥 ∩ 𝒫 𝑦) |
13 | | c0 3414 |
. . . . 5
class
∅ |
14 | 12, 13 | wne 2340 |
. . . 4
wff (𝑥 ∩ 𝒫 𝑦) ≠ ∅ |
15 | 5 | cpw 3566 |
. . . 4
class 𝒫
𝑤 |
16 | 14, 9, 15 | crab 2452 |
. . 3
class {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅} |
17 | 2, 3, 4, 7, 16 | cmpo 5855 |
. 2
class (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |
18 | 1, 17 | wceq 1348 |
1
wff filGen =
(𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |