ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mopn GIF version

Definition df-mopn 12785
Description: Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
df-mopn MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))

Detailed syntax breakdown of Definition df-mopn
StepHypRef Expression
1 cmopn 12779 . 2 class MetOpen
2 vd . . 3 setvar 𝑑
3 cxmet 12774 . . . . 5 class ∞Met
43crn 4612 . . . 4 class ran ∞Met
54cuni 3796 . . 3 class ran ∞Met
62cv 1347 . . . . . 6 class 𝑑
7 cbl 12776 . . . . . 6 class ball
86, 7cfv 5198 . . . . 5 class (ball‘𝑑)
98crn 4612 . . . 4 class ran (ball‘𝑑)
10 ctg 12594 . . . 4 class topGen
119, 10cfv 5198 . . 3 class (topGen‘ran (ball‘𝑑))
122, 5, 11cmpt 4050 . 2 class (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
131, 12wceq 1348 1 wff MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
Colors of variables: wff set class
This definition is referenced by:  mopnrel  13235  mopnval  13236  isxms2  13246
  Copyright terms: Public domain W3C validator