Detailed syntax breakdown of Definition df-metu
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmetu 14098 | 
. 2
class
metUnif | 
| 2 |   | vd | 
. . 3
setvar 𝑑 | 
| 3 |   | cpsmet 14091 | 
. . . . 5
class
PsMet | 
| 4 | 3 | crn 4664 | 
. . . 4
class ran
PsMet | 
| 5 | 4 | cuni 3839 | 
. . 3
class ∪ ran PsMet | 
| 6 | 2 | cv 1363 | 
. . . . . . 7
class 𝑑 | 
| 7 | 6 | cdm 4663 | 
. . . . . 6
class dom 𝑑 | 
| 8 | 7 | cdm 4663 | 
. . . . 5
class dom dom
𝑑 | 
| 9 | 8, 8 | cxp 4661 | 
. . . 4
class (dom dom
𝑑 × dom dom 𝑑) | 
| 10 |   | va | 
. . . . . 6
setvar 𝑎 | 
| 11 |   | crp 9728 | 
. . . . . 6
class
ℝ+ | 
| 12 | 6 | ccnv 4662 | 
. . . . . . 7
class ◡𝑑 | 
| 13 |   | cc0 7879 | 
. . . . . . . 8
class
0 | 
| 14 | 10 | cv 1363 | 
. . . . . . . 8
class 𝑎 | 
| 15 |   | cico 9965 | 
. . . . . . . 8
class
[,) | 
| 16 | 13, 14, 15 | co 5922 | 
. . . . . . 7
class
(0[,)𝑎) | 
| 17 | 12, 16 | cima 4666 | 
. . . . . 6
class (◡𝑑 “ (0[,)𝑎)) | 
| 18 | 10, 11, 17 | cmpt 4094 | 
. . . . 5
class (𝑎 ∈ ℝ+
↦ (◡𝑑 “ (0[,)𝑎))) | 
| 19 | 18 | crn 4664 | 
. . . 4
class ran
(𝑎 ∈
ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) | 
| 20 |   | cfg 14096 | 
. . . 4
class
filGen | 
| 21 | 9, 19, 20 | co 5922 | 
. . 3
class ((dom dom
𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) | 
| 22 | 2, 5, 21 | cmpt 4094 | 
. 2
class (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | 
| 23 | 1, 22 | wceq 1364 | 
1
wff metUnif =
(𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) |