HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcts 12701 Extend class notation with the topology component of a topological space.
class TopSet
 
Syntaxcple 12702 Extend class notation with "less than or equal to" for posets.
class le
 
Syntaxcoc 12703 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 12704 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 12705 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 12706 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 12707 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 12708 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
+g = Slot 2
 
Definitiondf-mulr 12709 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
.r = Slot 3
 
Definitiondf-starv 12710 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
*𝑟 = Slot 4
 
Definitiondf-sca 12711 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Scalar = Slot 5
 
Definitiondf-vsca 12712 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑠 = Slot 6
 
Definitiondf-ip 12713 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑖 = Slot 8
 
Definitiondf-tset 12714 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
TopSet = Slot 9
 
Definitiondf-ple 12715 Define "less than or equal to" ordering extractor for posets and related structures. We use 10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
le = Slot 10
 
Definitiondf-ocomp 12716 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
oc = Slot 11
 
Definitiondf-ds 12717 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
dist = Slot 12
 
Definitiondf-unif 12718 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
UnifSet = Slot 13
 
Definitiondf-hom 12719 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hom = Slot 14
 
Definitiondf-cco 12720 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
comp = Slot 15
 
Theoremstrleund 12721 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
Theoremstrleun 12722 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝐴, 𝐵    &   𝐺 Struct ⟨𝐶, 𝐷    &   𝐵 < 𝐶       (𝐹𝐺) Struct ⟨𝐴, 𝐷
 
Theoremstrext 12723 Extending the upper range of a structure. This works because when we say that a structure has components in 𝐴...𝐶 we are not saying that every slot in that range is present, just that all the slots that are present are within that range. (Contributed by Jim Kingdon, 26-Feb-2025.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐶 ∈ (ℤ𝐵))       (𝜑𝐹 Struct ⟨𝐴, 𝐶⟩)
 
Theoremstrle1g 12724 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
Theoremstrle2g 12725 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
Theoremstrle3g 12726 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽    &   𝐽 < 𝐾    &   𝐾 ∈ ℕ    &   𝐶 = 𝐾       ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
 
Theoremplusgndx 12727 Index value of the df-plusg 12708 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(+g‘ndx) = 2
 
Theoremplusgid 12728 Utility theorem: index-independent form of df-plusg 12708. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgndxnn 12729 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.)
(+g‘ndx) ∈ ℕ
 
Theoremplusgslid 12730 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
Theorembasendxltplusgndx 12731 The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.)
(Base‘ndx) < (+g‘ndx)
 
Theoremopelstrsl 12732 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
Theoremopelstrbas 12733 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstrg 12734 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
Theorem1strbas 12735 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strstrg 12736 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
Theorem2strbasg 12737 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2stropg 12738 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorem2strstr1g 12739 A constructed two-slot structure. Version of 2strstrg 12736 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strbas1g 12740 The base set of a constructed two-slot structure. Version of 2strbasg 12737 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2strop1g 12741 The other slot of a constructed two-slot structure. Version of 2stropg 12738 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorembasendxnplusgndx 12742 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
(Base‘ndx) ≠ (+g‘ndx)
 
Theoremgrpstrg 12743 A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 2⟩)
 
Theoremgrpbaseg 12744 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theoremgrpplusgg 12745 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → + = (+g𝐺))
 
Theoremressplusgd 12746 +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(𝜑𝐻 = (𝐺s 𝐴))    &   (𝜑+ = (+g𝐺))    &   (𝜑𝐴𝑉)    &   (𝜑𝐺𝑊)       (𝜑+ = (+g𝐻))
 
Theoremmulrndx 12747 Index value of the df-mulr 12709 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(.r‘ndx) = 3
 
Theoremmulridx 12748 Utility theorem: index-independent form of df-mulr 12709. (Contributed by Mario Carneiro, 8-Jun-2013.)
.r = Slot (.r‘ndx)
 
Theoremmulrslid 12749 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
Theoremplusgndxnmulrndx 12750 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 12751 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremrngstrg 12752 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
Theoremrngbaseg 12753 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
Theoremrngplusgg 12754 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → + = (+g𝑅))
 
Theoremrngmulrg 12755 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
 
Theoremstarvndx 12756 Index value of the df-starv 12710 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(*𝑟‘ndx) = 4
 
Theoremstarvid 12757 Utility theorem: index-independent form of df-starv 12710. (Contributed by Mario Carneiro, 6-Oct-2013.)
*𝑟 = Slot (*𝑟‘ndx)
 
Theoremstarvslid 12758 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
Theoremstarvndxnbasendx 12759 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (Base‘ndx)
 
Theoremstarvndxnplusgndx 12760 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (+g‘ndx)
 
Theoremstarvndxnmulrndx 12761 The slot for the involution function is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(*𝑟‘ndx) ≠ (.r‘ndx)
 
Theoremressmulrg 12762 .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)    &    · = (.r𝑅)       ((𝐴𝑉𝑅𝑊) → · = (.r𝑆))
 
Theoremsrngstrd 12763 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
Theoremsrngbased 12764 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
Theoremsrngplusgd 12765 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
Theoremsrngmulrd 12766 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑· = (.r𝑅))
 
Theoremsrnginvld 12767 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑 = (*𝑟𝑅))
 
Theoremscandx 12768 Index value of the df-sca 12711 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(Scalar‘ndx) = 5
 
Theoremscaid 12769 Utility theorem: index-independent form of scalar df-sca 12711. (Contributed by Mario Carneiro, 19-Jun-2014.)
Scalar = Slot (Scalar‘ndx)
 
Theoremscaslid 12770 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
Theoremscandxnbasendx 12771 The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(Scalar‘ndx) ≠ (Base‘ndx)
 
Theoremscandxnplusgndx 12772 The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
(Scalar‘ndx) ≠ (+g‘ndx)
 
Theoremscandxnmulrndx 12773 The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(Scalar‘ndx) ≠ (.r‘ndx)
 
Theoremvscandx 12774 Index value of the df-vsca 12712 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
( ·𝑠 ‘ndx) = 6
 
Theoremvscaid 12775 Utility theorem: index-independent form of scalar product df-vsca 12712. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
·𝑠 = Slot ( ·𝑠 ‘ndx)
 
Theoremvscandxnbasendx 12776 The slot for the scalar product is not the slot for the base set in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (Base‘ndx)
 
Theoremvscandxnplusgndx 12777 The slot for the scalar product is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (+g‘ndx)
 
Theoremvscandxnmulrndx 12778 The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (.r‘ndx)
 
Theoremvscandxnscandx 12779 The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.)
( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
 
Theoremvscaslid 12780 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
Theoremlmodstrd 12781 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
Theoremlmodbased 12782 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremlmodplusgd 12783 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
Theoremlmodscad 12784 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
Theoremlmodvscad 12785 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
Theoremipndx 12786 Index value of the df-ip 12713 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(·𝑖‘ndx) = 8
 
Theoremipid 12787 Utility theorem: index-independent form of df-ip 12713. (Contributed by Mario Carneiro, 6-Oct-2013.)
·𝑖 = Slot (·𝑖‘ndx)
 
Theoremipslid 12788 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
Theoremipndxnbasendx 12789 The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
(·𝑖‘ndx) ≠ (Base‘ndx)
 
Theoremipndxnplusgndx 12790 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(·𝑖‘ndx) ≠ (+g‘ndx)
 
Theoremipndxnmulrndx 12791 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
(·𝑖‘ndx) ≠ (.r‘ndx)
 
Theoremslotsdifipndx 12792 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
(( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx))
 
Theoremipsstrd 12793 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
 
Theoremipsbased 12794 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐵 = (Base‘𝐴))
 
Theoremipsaddgd 12795 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑+ = (+g𝐴))
 
Theoremipsmulrd 12796 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑× = (.r𝐴))
 
Theoremipsscad 12797 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝑆 = (Scalar‘𝐴))
 
Theoremipsvscad 12798 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑· = ( ·𝑠𝐴))
 
Theoremipsipd 12799 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐼 = (·𝑖𝐴))
 
Theoremressscag 12800 Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐻 = (𝐺s 𝐴)    &   𝐹 = (Scalar‘𝐺)       ((𝐺𝑋𝐴𝑉) → 𝐹 = (Scalar‘𝐻))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >