Theorem List for Intuitionistic Logic Explorer - 12701-12800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | mettri2 12701 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
20-Aug-2015.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
|
Theorem | xmet0 12702 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
|
Theorem | met0 12703 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM,
30-Aug-2006.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
|
Theorem | xmetge0 12704 |
The distance function of a metric space is nonnegative. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
|
Theorem | metge0 12705 |
The distance function of a metric space is nonnegative. (Contributed by
NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
|
Theorem | xmetlecl 12706 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) |
|
Theorem | xmetsym 12707 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
|
Theorem | xmetpsmet 12708 |
An extended metric is a pseudometric. (Contributed by Thierry Arnoux,
7-Feb-2018.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
|
Theorem | xmettpos 12709 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) |
|
Theorem | metsym 12710 |
The distance function of a metric space is symmetric. Definition
14-1.1(c) of [Gleason] p. 223.
(Contributed by NM, 27-Aug-2006.)
(Revised by Mario Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
|
Theorem | xmettri 12711 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
|
Theorem | mettri 12712 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by NM,
27-Aug-2006.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
|
Theorem | xmettri3 12713 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) |
|
Theorem | mettri3 12714 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 13-Mar-2007.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
|
Theorem | xmetrtri 12715 |
One half of the reverse triangle inequality for the distance function of
an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒
-𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) |
|
Theorem | metrtri 12716 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
21-Apr-2023.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
|
Theorem | metn0 12717 |
A metric space is nonempty iff its base set is nonempty. (Contributed
by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) |
|
Theorem | xmetres2 12718 |
Restriction of an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |
|
Theorem | metreslem 12719 |
Lemma for metres 12722. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) |
|
Theorem | metres2 12720 |
Lemma for metres 12722. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
|
Theorem | xmetres 12721 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) |
|
Theorem | metres 12722 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) |
|
Theorem | 0met 12723 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
⊢ ∅ ∈
(Met‘∅) |
|
7.2.3 Metric space balls
|
|
Theorem | blfvalps 12724* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Feb-2018.)
|
⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
|
Theorem | blfval 12725* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
|
Theorem | blex 12726 |
A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V) |
|
Theorem | blvalps 12727* |
The ball around a point 𝑃 is the set of all points whose
distance
from 𝑃 is less than the ball's radius 𝑅.
(Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
|
Theorem | blval 12728* |
The ball around a point 𝑃 is the set of all points whose
distance
from 𝑃 is less than the ball's radius 𝑅.
(Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
|
Theorem | elblps 12729 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
|
Theorem | elbl 12730 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
|
Theorem | elbl2ps 12731 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
|
Theorem | elbl2 12732 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) |
|
Theorem | elbl3ps 12733 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) |
|
Theorem | elbl3 12734 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) |
|
Theorem | blcomps 12735 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) |
|
Theorem | blcom 12736 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) |
|
Theorem | xblpnfps 12737 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
|
Theorem | xblpnf 12738 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) |
|
Theorem | blpnf 12739 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋) |
|
Theorem | bldisj 12740 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*
∧ (𝑅
+𝑒 𝑆)
≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅) |
|
Theorem | blgt0 12741 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅) |
|
Theorem | bl2in 12742 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
|
Theorem | xblss2ps 12743 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 12746 for
extended metrics, we have to assume the balls are a finite distance
apart, or else 𝑃 will not even be in the infinity
ball around
𝑄. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋)
& ⊢ (𝜑 → 𝑄 ∈ 𝑋)
& ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
|
Theorem | xblss2 12744 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 12746 for
extended metrics, we have to assume the balls are a finite distance
apart, or else 𝑃 will not even be in the infinity
ball around
𝑄. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋)
& ⊢ (𝜑 → 𝑄 ∈ 𝑋)
& ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
|
Theorem | blss2ps 12745 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
|
Theorem | blss2 12746 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |
|
Theorem | blhalf 12747 |
A ball of radius 𝑅 / 2 is contained in a ball of radius
𝑅
centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
|
Theorem | blfps 12748 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
|
Theorem | blf 12749 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
|
Theorem | blrnps 12750* |
Membership in the range of the ball function. Note that
ran (ball‘𝐷) is the collection of all balls for
metric 𝐷.
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟))) |
|
Theorem | blrn 12751* |
Membership in the range of the ball function. Note that
ran (ball‘𝐷) is the collection of all balls for
metric 𝐷.
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟))) |
|
Theorem | xblcntrps 12752 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
|
Theorem | xblcntr 12753 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
|
Theorem | blcntrps 12754 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
|
Theorem | blcntr 12755 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) |
|
Theorem | xblm 12756* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) →
(∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅)) |
|
Theorem | bln0 12757 |
A ball is not empty. It is also inhabited, as seen at blcntr 12755.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ≠ ∅) |
|
Theorem | blelrnps 12758 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷)) |
|
Theorem | blelrn 12759 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷)) |
|
Theorem | blssm 12760 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
|
Theorem | unirnblps 12761 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran
(ball‘𝐷) = 𝑋) |
|
Theorem | unirnbl 12762 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran
(ball‘𝐷) = 𝑋) |
|
Theorem | blininf 12763 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, <
))) |
|
Theorem | ssblps 12764 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
|
Theorem | ssbl 12765 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)
∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
|
Theorem | blssps 12766* |
Any point 𝑃 in a ball 𝐵 can be centered in
another ball that is
a subset of 𝐵. (Contributed by NM, 31-Aug-2006.)
(Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) |
|
Theorem | blss 12767* |
Any point 𝑃 in a ball 𝐵 can be centered in
another ball that is
a subset of 𝐵. (Contributed by NM, 31-Aug-2006.)
(Revised by
Mario Carneiro, 24-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) |
|
Theorem | blssexps 12768* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
|
Theorem | blssex 12769* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
|
Theorem | ssblex 12770* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ ∃𝑥 ∈
ℝ+ (𝑥
< 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆))) |
|
Theorem | blin2 12771* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵 ∩ 𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵 ∩ 𝐶)) |
|
Theorem | blbas 12772 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) |
|
Theorem | blres 12773 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
⊢ 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)) |
|
Theorem | xmeterval 12774 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
|
Theorem | xmeter 12775 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ Er 𝑋) |
|
Theorem | xmetec 12776 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
|
Theorem | blssec 12777 |
A ball centered at 𝑃 is contained in the set of points
finitely
separated from 𝑃. This is just an application of ssbl 12765
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
|
Theorem | blpnfctr 12778 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
|
Theorem | xmetresbl 12779 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 12776, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance +∞
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
⊢ 𝐵 = (𝑃(ball‘𝐷)𝑅) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵)) |
|
7.2.4 Open sets of a metric space
|
|
Theorem | mopnrel 12780 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
⊢ Rel MetOpen |
|
Theorem | mopnval 12781 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
(MetOpen‘𝐷) is the family of all open sets in
the metric space
determined by the metric 𝐷. By mopntop 12783, the open sets of a
metric space form a topology 𝐽, whose base set is ∪ 𝐽 by
mopnuni 12784. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
|
Theorem | mopntopon 12782 |
The set of open sets of a metric space 𝑋 is a topology on 𝑋.
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
|
Theorem | mopntop 12783 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
|
Theorem | mopnuni 12784 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
|
Theorem | elmopn 12785* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
|
Theorem | mopnfss 12786 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
|
Theorem | mopnm 12787 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
|
Theorem | elmopn2 12788* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))) |
|
Theorem | mopnss 12789 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
|
Theorem | isxms 12790 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | isxms2 12791 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | isms 12792 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
|
Theorem | isms2 12793 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | xmstopn 12794 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
|
Theorem | mstopn 12795 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷)) |
|
Theorem | xmstps 12796 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
|
Theorem | msxms 12797 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
|
Theorem | mstps 12798 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
|
Theorem | xmsxmet 12799 |
The distance function, suitably truncated, is an extended metric on
𝑋. (Contributed by Mario Carneiro,
2-Sep-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
|
Theorem | msmet 12800 |
The distance function, suitably truncated, is a metric on 𝑋.
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |