Theorem List for Intuitionistic Logic Explorer - 12701-12800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | phival 12701* |
Value of the Euler ϕ function. (Contributed by
Mario Carneiro,
23-Feb-2014.)
|
| ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| |
| Theorem | phicl2 12702 |
Bounds and closure for the value of the Euler ϕ
function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
| ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁)) |
| |
| Theorem | phicl 12703 |
Closure for the value of the Euler ϕ function.
(Contributed by
Mario Carneiro, 28-Feb-2014.)
|
| ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈
ℕ) |
| |
| Theorem | phibndlem 12704* |
Lemma for phibnd 12705. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
| |
| Theorem | phibnd 12705 |
A slightly tighter bound on the value of the Euler ϕ function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
| ⊢ (𝑁 ∈ (ℤ≥‘2)
→ (ϕ‘𝑁)
≤ (𝑁 −
1)) |
| |
| Theorem | phicld 12706 |
Closure for the value of the Euler ϕ function.
(Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (ϕ‘𝑁) ∈ ℕ) |
| |
| Theorem | phi1 12707 |
Value of the Euler ϕ function at 1. (Contributed
by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ (ϕ‘1) = 1 |
| |
| Theorem | dfphi2 12708* |
Alternate definition of the Euler ϕ function.
(Contributed by
Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro,
2-May-2016.)
|
| ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| |
| Theorem | hashdvds 12709* |
The number of numbers in a given residue class in a finite set of
integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof
shortened by Mario Carneiro, 7-Jun-2016.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈
(ℤ≥‘(𝐴 − 1))) & ⊢ (𝜑 → 𝐶 ∈ ℤ)
⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| |
| Theorem | phiprmpw 12710 |
Value of the Euler ϕ function at a prime power.
Theorem 2.5(a) in
[ApostolNT] p. 28. (Contributed by
Mario Carneiro, 24-Feb-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) →
(ϕ‘(𝑃↑𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) |
| |
| Theorem | phiprm 12711 |
Value of the Euler ϕ function at a prime.
(Contributed by Mario
Carneiro, 28-Feb-2014.)
|
| ⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) |
| |
| Theorem | crth 12712* |
The Chinese Remainder Theorem: the function that maps 𝑥 to its
remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when
𝑀
and
𝑁 are coprime. (Contributed by Mario
Carneiro, 24-Feb-2014.)
(Proof shortened by Mario Carneiro, 2-May-2016.)
|
| ⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ⇒ ⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) |
| |
| Theorem | phimullem 12713* |
Lemma for phimul 12714. (Contributed by Mario Carneiro,
24-Feb-2014.)
|
| ⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) & ⊢ 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} & ⊢ 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑊 = {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} ⇒ ⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) |
| |
| Theorem | phimul 12714 |
The Euler ϕ function is a multiplicative function,
meaning that it
distributes over multiplication at relatively prime arguments. Theorem
2.5(c) in [ApostolNT] p. 28.
(Contributed by Mario Carneiro,
24-Feb-2014.)
|
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) |
| |
| Theorem | eulerthlem1 12715* |
Lemma for eulerth 12721. (Contributed by Mario Carneiro,
8-May-2015.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆)
& ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| |
| Theorem | eulerthlemfi 12716* |
Lemma for eulerth 12721. The set 𝑆 is finite. (Contributed by Mario
Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) |
| |
| Theorem | eulerthlemrprm 12717* |
Lemma for eulerth 12721. 𝑁 and
∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) are relatively prime.
(Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim
Kingdon, 2-Sep-2024.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) |
| |
| Theorem | eulerthlema 12718* |
Lemma for eulerth 12721. (Contributed by Mario Carneiro,
28-Feb-2014.)
(Revised by Jim Kingdon, 2-Sep-2024.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) |
| |
| Theorem | eulerthlemh 12719* |
Lemma for eulerth 12721. A permutation of (1...(ϕ‘𝑁)).
(Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim
Kingdon, 5-Sep-2024.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆)
& ⊢ 𝐻 = (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))) ⇒ ⊢ (𝜑 → 𝐻:(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁))) |
| |
| Theorem | eulerthlemth 12720* |
Lemma for eulerth 12721. The result. (Contributed by Mario
Carneiro,
28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
|
| ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
| |
| Theorem | eulerth 12721 |
Euler's theorem, a generalization of Fermat's little theorem. If 𝐴
and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This
is Metamath 100 proof #10. Also called Euler-Fermat theorem, see
theorem 5.17 in [ApostolNT] p. 113.
(Contributed by Mario Carneiro,
28-Feb-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
| |
| Theorem | fermltl 12722 |
Fermat's little theorem. When 𝑃 is prime, 𝐴↑𝑃≡𝐴 (mod 𝑃)
for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by
Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑𝑃) mod 𝑃) = (𝐴 mod 𝑃)) |
| |
| Theorem | prmdiv 12723 |
Show an explicit expression for the modular inverse of 𝐴 mod 𝑃.
(Contributed by Mario Carneiro, 24-Jan-2015.)
|
| ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
| |
| Theorem | prmdiveq 12724 |
The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario
Carneiro, 24-Jan-2015.)
|
| ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) |
| |
| Theorem | prmdivdiv 12725 |
The (modular) inverse of the inverse of a number is itself.
(Contributed by Mario Carneiro, 24-Jan-2015.)
|
| ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
| |
| Theorem | hashgcdlem 12726* |
A correspondence between elements of specific GCD and relative primes in
a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
|
| ⊢ 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} & ⊢ 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
& ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 · 𝑁)) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | dvdsfi 12727* |
A natural number has finitely many divisors. (Contributed by Jim
Kingdon, 9-Oct-2025.)
|
| ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| |
| Theorem | hashgcdeq 12728* |
Number of initial positive integers with specified divisors.
(Contributed by Stefan O'Rear, 12-Sep-2015.)
|
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
(0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁 ∥ 𝑀, (ϕ‘(𝑀 / 𝑁)), 0)) |
| |
| Theorem | phisum 12729* |
The divisor sum identity of the totient function. Theorem 2.2 in
[ApostolNT] p. 26. (Contributed by
Stefan O'Rear, 12-Sep-2015.)
|
| ⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) |
| |
| Theorem | odzval 12730* |
Value of the order function. This is a function of functions; the inner
argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime)
and the outer argument selects the integer or equivalence class (if you
want to think about it that way) from the integers mod 𝑁. In
order
to ensure the supremum is well-defined, we only define the expression
when 𝐴 and 𝑁 are coprime.
(Contributed by Mario Carneiro,
23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
| |
| Theorem | odzcllem 12731 |
- Lemma for odzcl 12732, showing existence of a recurrent point for
the
exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof
shortened by AV, 26-Sep-2020.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
(((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) |
| |
| Theorem | odzcl 12732 |
The order of a group element is an integer. (Contributed by Mario
Carneiro, 28-Feb-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) ∈ ℕ) |
| |
| Theorem | odzid 12733 |
Any element raised to the power of its order is 1.
(Contributed by
Mario Carneiro, 28-Feb-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) |
| |
| Theorem | odzdvds 12734 |
The only powers of 𝐴 that are congruent to 1 are the multiples
of the order of 𝐴. (Contributed by Mario Carneiro,
28-Feb-2014.)
(Proof shortened by AV, 26-Sep-2020.)
|
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔
((odℤ‘𝑁)‘𝐴) ∥ 𝐾)) |
| |
| Theorem | odzphi 12735 |
The order of any group element is a divisor of the Euler ϕ
function. (Contributed by Mario Carneiro, 28-Feb-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) ∥ (ϕ‘𝑁)) |
| |
| 5.2.6 Arithmetic modulo a prime
number
|
| |
| Theorem | modprm1div 12736 |
A prime number divides an integer minus 1 iff the integer modulo the prime
number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.)
(Proof shortened by AV, 30-May-2023.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) |
| |
| Theorem | m1dvdsndvds 12737 |
If an integer minus 1 is divisible by a prime number, the integer itself
is not divisible by this prime number. (Contributed by Alexander van der
Vekens, 30-Aug-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃 ∥ 𝐴)) |
| |
| Theorem | modprminv 12738 |
Show an explicit expression for the modular inverse of 𝐴 mod 𝑃.
This is an application of prmdiv 12723. (Contributed by Alexander van der
Vekens, 15-May-2018.)
|
| ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) |
| |
| Theorem | modprminveq 12739 |
The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by
Alexander
van der Vekens, 17-May-2018.)
|
| ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) |
| |
| Theorem | vfermltl 12740 |
Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃,
see theorem 5.18 in [ApostolNT] p. 113.
(Contributed by AV, 21-Aug-2020.)
(Proof shortened by AV, 5-Sep-2020.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) |
| |
| Theorem | powm2modprm 12741 |
If an integer minus 1 is divisible by a prime number, then the integer to
the power of the prime number minus 2 is 1 modulo the prime number.
(Contributed by Alexander van der Vekens, 30-Aug-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)) |
| |
| Theorem | reumodprminv 12742* |
For any prime number and for any positive integer less than this prime
number, there is a unique modular inverse of this positive integer.
(Contributed by Alexander van der Vekens, 12-May-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1) |
| |
| Theorem | modprm0 12743* |
For two positive integers less than a given prime number there is always
a nonnegative integer (less than the given prime number) so that the sum
of one of the two positive integers and the other of the positive
integers multiplied by the nonnegative integer is 0 ( modulo the given
prime number). (Contributed by Alexander van der Vekens,
17-May-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) |
| |
| Theorem | nnnn0modprm0 12744* |
For a positive integer and a nonnegative integer both less than a given
prime number there is always a second nonnegative integer (less than the
given prime number) so that the sum of this second nonnegative integer
multiplied with the positive integer and the first nonnegative integer
is 0 ( modulo the given prime number). (Contributed by Alexander van
der Vekens, 8-Nov-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) |
| |
| Theorem | modprmn0modprm0 12745* |
For an integer not being 0 modulo a given prime number and a nonnegative
integer less than the prime number, there is always a second nonnegative
integer (less than the given prime number) so that the sum of this
second nonnegative integer multiplied with the integer and the first
nonnegative integer is 0 ( modulo the given prime number). (Contributed
by Alexander van der Vekens, 10-Nov-2018.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)) |
| |
| 5.2.7 Pythagorean Triples
|
| |
| Theorem | coprimeprodsq 12746 |
If three numbers are coprime, and the square of one is the product of the
other two, then there is a formula for the other two in terms of gcd
and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario
Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0)
∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) |
| |
| Theorem | coprimeprodsq2 12747 |
If three numbers are coprime, and the square of one is the product of the
other two, then there is a formula for the other two in terms of gcd
and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0)
∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) |
| |
| Theorem | oddprm 12748 |
A prime not equal to 2 is odd. (Contributed by Mario
Carneiro,
4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
|
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) →
((𝑁 − 1) / 2) ∈
ℕ) |
| |
| Theorem | nnoddn2prm 12749 |
A prime not equal to 2 is an odd positive integer.
(Contributed by
AV, 28-Jun-2021.)
|
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) |
| |
| Theorem | oddn2prm 12750 |
A prime not equal to 2 is odd. (Contributed by AV,
28-Jun-2021.)
|
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬
2 ∥ 𝑁) |
| |
| Theorem | nnoddn2prmb 12751 |
A number is a prime number not equal to 2 iff it is an
odd prime
number. Conversion theorem for two representations of odd primes.
(Contributed by AV, 14-Jul-2021.)
|
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2
∥ 𝑁)) |
| |
| Theorem | prm23lt5 12752 |
A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) |
| |
| Theorem | prm23ge5 12753 |
A prime is either 2 or 3 or greater than or equal to 5. (Contributed by
AV, 5-Jul-2021.)
|
| ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5))) |
| |
| Theorem | pythagtriplem1 12754* |
Lemma for pythagtrip 12772. Prove a weaker version of one direction of
the
theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario
Carneiro, 19-Apr-2014.)
|
| ⊢ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| |
| Theorem | pythagtriplem2 12755* |
Lemma for pythagtrip 12772. Prove the full version of one direction of
the
theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario
Carneiro, 19-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))) |
| |
| Theorem | pythagtriplem3 12756 |
Lemma for pythagtrip 12772. Show that 𝐶 and 𝐵 are
relatively prime
under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.)
(Revised by Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |
| |
| Theorem | pythagtriplem4 12757 |
Lemma for pythagtrip 12772. Show that 𝐶 − 𝐵 and 𝐶 + 𝐵 are relatively
prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario
Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd (𝐶 + 𝐵)) = 1) |
| |
| Theorem | pythagtriplem10 12758 |
Lemma for pythagtrip 12772. Show that 𝐶 − 𝐵 is positive. (Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
| |
| Theorem | pythagtriplem6 12759 |
Lemma for pythagtrip 12772. Calculate (√‘(𝐶 − 𝐵)).
(Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) |
| |
| Theorem | pythagtriplem7 12760 |
Lemma for pythagtrip 12772. Calculate (√‘(𝐶 + 𝐵)).
(Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) |
| |
| Theorem | pythagtriplem8 12761 |
Lemma for pythagtrip 12772. Show that (√‘(𝐶 − 𝐵)) is a
positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised
by Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
| |
| Theorem | pythagtriplem9 12762 |
Lemma for pythagtrip 12772. Show that (√‘(𝐶 + 𝐵)) is a
positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised
by Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) |
| |
| Theorem | pythagtriplem11 12763 |
Lemma for pythagtrip 12772. Show that 𝑀 (which will eventually
be
closely related to the 𝑚 in the final statement) is a natural.
(Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) |
| |
| Theorem | pythagtriplem12 12764 |
Lemma for pythagtrip 12772. Calculate the square of 𝑀.
(Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) |
| |
| Theorem | pythagtriplem13 12765 |
Lemma for pythagtrip 12772. Show that 𝑁 (which will eventually
be
closely related to the 𝑛 in the final statement) is a natural.
(Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) |
| |
| Theorem | pythagtriplem14 12766 |
Lemma for pythagtrip 12772. Calculate the square of 𝑁.
(Contributed
by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro,
19-Apr-2014.)
|
| ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |
| |
| Theorem | pythagtriplem15 12767 |
Lemma for pythagtrip 12772. Show the relationship between 𝑀, 𝑁,
and 𝐴. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) |
| |
| Theorem | pythagtriplem16 12768 |
Lemma for pythagtrip 12772. Show the relationship between 𝑀, 𝑁,
and 𝐵. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |
| |
| Theorem | pythagtriplem17 12769 |
Lemma for pythagtrip 12772. Show the relationship between 𝑀, 𝑁,
and 𝐶. (Contributed by Scott Fenton,
17-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 = ((𝑀↑2) + (𝑁↑2))) |
| |
| Theorem | pythagtriplem18 12770* |
Lemma for pythagtrip 12772. Wrap the previous 𝑀 and 𝑁 up in
quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by
Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝑚↑2) − (𝑛↑2)) ∧ 𝐵 = (2 · (𝑚 · 𝑛)) ∧ 𝐶 = ((𝑚↑2) + (𝑛↑2)))) |
| |
| Theorem | pythagtriplem19 12771* |
Lemma for pythagtrip 12772. Introduce 𝑘 and remove the relative
primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.)
(Revised by Mario Carneiro, 19-Apr-2014.)
|
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| |
| Theorem | pythagtrip 12772* |
Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are
naturals, then they obey the Pythagorean triple formula iff they are
parameterized by three naturals. This proof follows the Isabelle proof
at http://afp.sourceforge.net/entries/Fermat3_4.shtml.
This is
Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))) |
| |
| 5.2.8 The prime count function
|
| |
| Syntax | cpc 12773 |
Extend class notation with the prime count function.
|
| class pCnt |
| |
| Definition | df-pc 12774* |
Define the prime count function, which returns the largest exponent of a
given prime (or other positive integer) that divides the number. For
rational numbers, it returns negative values according to the power of a
prime in the denominator. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
| |
| Theorem | pclem0 12775* |
Lemma for the prime power pre-function's properties. (Contributed by
Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon,
7-Oct-2024.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) → 0
∈ 𝐴) |
| |
| Theorem | pclemub 12776* |
Lemma for the prime power pre-function's properties. (Contributed by
Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon,
7-Oct-2024.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
∃𝑥 ∈ ℤ
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| |
| Theorem | pclemdc 12777* |
Lemma for the prime power pre-function's properties. (Contributed by
Jim Kingdon, 8-Oct-2024.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} ⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
∀𝑥 ∈ ℤ
DECID 𝑥
∈ 𝐴) |
| |
| Theorem | pcprecl 12778* |
Closure of the prime power pre-function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
(𝑆 ∈
ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| |
| Theorem | pcprendvds 12779* |
Non-divisibility property of the prime power pre-function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
| |
| Theorem | pcprendvds2 12780* |
Non-divisibility property of the prime power pre-function.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ (𝑁 ∈ ℤ
∧ 𝑁 ≠ 0)) →
¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
| |
| Theorem | pcpre1 12781* |
Value of the prime power pre-function at 1. (Contributed by Mario
Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
|
| ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}
& ⊢ 𝑆 = sup(𝐴, ℝ, < )
⇒ ⊢ ((𝑃 ∈ (ℤ≥‘2)
∧ 𝑁 = 1) → 𝑆 = 0) |
| |
| Theorem | pcpremul 12782* |
Multiplicative property of the prime count pre-function. Note that the
primality of 𝑃 is essential for this property;
(4 pCnt 2) = 0
but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt
2) = 0. Since
this is needed to show uniqueness for the real prime count function
(over ℚ), we don't bother to define it off
the primes.
(Contributed by Mario Carneiro, 23-Feb-2014.)
|
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, <
) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) |
| |
| Theorem | pceulem 12783* |
Lemma for pceu 12784. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) & ⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) & ⊢ 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑥 / 𝑦))
& ⊢ (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ)) & ⊢ (𝜑 → 𝑁 = (𝑠 / 𝑡)) ⇒ ⊢ (𝜑 → (𝑆 − 𝑇) = (𝑈 − 𝑉)) |
| |
| Theorem | pceu 12784* |
Uniqueness for the prime power function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
| |
| Theorem | pcval 12785* |
The value of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
|
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) & ⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
| |
| Theorem | pczpre 12786* |
Connect the prime count pre-function to the actual prime count function,
when restricted to the integers. (Contributed by Mario Carneiro,
23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
|
| ⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < )
⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) |
| |
| Theorem | pczcl 12787 |
Closure of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈
ℕ0) |
| |
| Theorem | pccl 12788 |
Closure of the prime power function. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈
ℕ0) |
| |
| Theorem | pccld 12789 |
Closure of the prime power function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈
ℕ0) |
| |
| Theorem | pcmul 12790 |
Multiplication property of the prime power function. (Contributed by
Mario Carneiro, 23-Feb-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
| |
| Theorem | pcdiv 12791 |
Division property of the prime power function. (Contributed by Mario
Carneiro, 1-Mar-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |
| |
| Theorem | pcqmul 12792 |
Multiplication property of the prime power function. (Contributed by
Mario Carneiro, 9-Sep-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 · 𝐵)) = ((𝑃 pCnt 𝐴) + (𝑃 pCnt 𝐵))) |
| |
| Theorem | pc0 12793 |
The value of the prime power function at zero. (Contributed by Mario
Carneiro, 3-Oct-2014.)
|
| ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) |
| |
| Theorem | pc1 12794 |
Value of the prime count function at 1. (Contributed by Mario Carneiro,
23-Feb-2014.)
|
| ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
| |
| Theorem | pcqcl 12795 |
Closure of the general prime count function. (Contributed by Mario
Carneiro, 23-Feb-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) |
| |
| Theorem | pcqdiv 12796 |
Division property of the prime power function. (Contributed by Mario
Carneiro, 10-Aug-2015.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |
| |
| Theorem | pcrec 12797 |
Prime power of a reciprocal. (Contributed by Mario Carneiro,
10-Aug-2015.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
| |
| Theorem | pcexp 12798 |
Prime power of an exponential. (Contributed by Mario Carneiro,
10-Aug-2015.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |
| |
| Theorem | pcxnn0cl 12799 |
Extended nonnegative integer closure of the general prime count
function. (Contributed by Jim Kingdon, 13-Oct-2024.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈
ℕ0*) |
| |
| Theorem | pcxcl 12800 |
Extended real closure of the general prime count function. (Contributed
by Mario Carneiro, 3-Oct-2014.)
|
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈
ℝ*) |