Theorem List for Intuitionistic Logic Explorer - 12701-12800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Syntax | cts 12701 |
Extend class notation with the topology component of a topological
space.
|
class TopSet |
|
Syntax | cple 12702 |
Extend class notation with "less than or equal to" for posets.
|
class le |
|
Syntax | coc 12703 |
Extend class notation with the class of orthocomplementation
extractors.
|
class oc |
|
Syntax | cds 12704 |
Extend class notation with the metric space distance function.
|
class dist |
|
Syntax | cunif 12705 |
Extend class notation with the uniform structure.
|
class UnifSet |
|
Syntax | chom 12706 |
Extend class notation with the hom-set structure.
|
class Hom |
|
Syntax | cco 12707 |
Extend class notation with the composition operation.
|
class comp |
|
Definition | df-plusg 12708 |
Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ +g = Slot 2 |
|
Definition | df-mulr 12709 |
Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ .r = Slot 3 |
|
Definition | df-starv 12710 |
Define the involution function of a *-ring. (Contributed by NM,
4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ *𝑟 = Slot
4 |
|
Definition | df-sca 12711 |
Define scalar field component of a vector space 𝑣. (Contributed by
NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ Scalar = Slot 5 |
|
Definition | df-vsca 12712 |
Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by
Mario Carneiro, 14-Aug-2015.)
|
⊢ ·𝑠 = Slot
6 |
|
Definition | df-ip 12713 |
Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
⊢ ·𝑖 = Slot
8 |
|
Definition | df-tset 12714 |
Define the topology component of a topological space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ TopSet = Slot 9 |
|
Definition | df-ple 12715 |
Define "less than or equal to" ordering extractor for posets and
related
structures. We use ;10 for the index to avoid conflict with 1
through 9 used for other purposes. (Contributed
by NM, 4-Sep-2011.)
(Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
⊢ le = Slot ;10 |
|
Definition | df-ocomp 12716 |
Define the orthocomplementation extractor for posets and related
structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ oc = Slot ;11 |
|
Definition | df-ds 12717 |
Define the distance function component of a metric space (structure).
(Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro,
14-Aug-2015.)
|
⊢ dist = Slot ;12 |
|
Definition | df-unif 12718 |
Define the uniform structure component of a uniform space. (Contributed
by Mario Carneiro, 14-Aug-2015.)
|
⊢ UnifSet = Slot ;13 |
|
Definition | df-hom 12719 |
Define the hom-set component of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
⊢ Hom = Slot ;14 |
|
Definition | df-cco 12720 |
Define the composition operation of a category. (Contributed by Mario
Carneiro, 2-Jan-2017.)
|
⊢ comp = Slot ;15 |
|
Theorem | strleund 12721 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
|
Theorem | strleun 12722 |
Combine two structures into one. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |
|
Theorem | strext 12723 |
Extending the upper range of a structure. This works because when we
say that a structure has components in 𝐴...𝐶 we are not saying
that every slot in that range is present, just that all the slots that
are present are within that range. (Contributed by Jim Kingdon,
26-Feb-2025.)
|
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐵))
⇒ ⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐶〉) |
|
Theorem | strle1g 12724 |
Make a structure from a singleton. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ (𝑋 ∈ 𝑉 → {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉) |
|
Theorem | strle2g 12725 |
Make a structure from a pair. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉) |
|
Theorem | strle3g 12726 |
Make a structure from a triple. (Contributed by Mario Carneiro,
29-Aug-2015.)
|
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼
& ⊢ 𝐼 < 𝐽
& ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽
& ⊢ 𝐽 < 𝐾
& ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉) |
|
Theorem | plusgndx 12727 |
Index value of the df-plusg 12708 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (+g‘ndx) =
2 |
|
Theorem | plusgid 12728 |
Utility theorem: index-independent form of df-plusg 12708. (Contributed by
NM, 20-Oct-2012.)
|
⊢ +g = Slot
(+g‘ndx) |
|
Theorem | plusgndxnn 12729 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 17-Oct-2024.)
|
⊢ (+g‘ndx) ∈
ℕ |
|
Theorem | plusgslid 12730 |
Slot property of +g. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (+g = Slot
(+g‘ndx) ∧ (+g‘ndx) ∈
ℕ) |
|
Theorem | basendxltplusgndx 12731 |
The index of the slot for the base set is less then the index of the slot
for the group operation in an extensible structure. (Contributed by AV,
17-Oct-2024.)
|
⊢ (Base‘ndx) <
(+g‘ndx) |
|
Theorem | opelstrsl 12732 |
The slot of a structure which contains an ordered pair for that slot.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(𝐸‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (𝐸‘𝑆)) |
|
Theorem | opelstrbas 12733 |
The base set of a structure with a base set. (Contributed by AV,
10-Nov-2021.)
|
⊢ (𝜑 → 𝑆 Struct 𝑋)
& ⊢ (𝜑 → 𝑉 ∈ 𝑌)
& ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
|
Theorem | 1strstrg 12734 |
A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
(Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐺 Struct 〈1, 1〉) |
|
Theorem | 1strbas 12735 |
The base set of a constructed one-slot structure. (Contributed by AV,
27-Mar-2020.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2strstrg 12736 |
A constructed two-slot structure. (Contributed by Mario Carneiro,
29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 𝑁〉) |
|
Theorem | 2strbasg 12737 |
The base set of a constructed two-slot structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2stropg 12738 |
The other slot of a constructed two-slot structure. (Contributed by
Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁
& ⊢ 1 < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
Theorem | 2strstr1g 12739 |
A constructed two-slot structure. Version of 2strstrg 12736 not depending
on the hard-coded index value of the base set. (Contributed by AV,
22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
|
Theorem | 2strbas1g 12740 |
The base set of a constructed two-slot structure. Version of 2strbasg 12737
not depending on the hard-coded index value of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ
⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | 2strop1g 12741 |
The other slot of a constructed two-slot structure. Version of
2stropg 12738 not depending on the hard-coded index value
of the base set.
(Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon,
2-Feb-2023.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢
(Base‘ndx) < 𝑁
& ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
|
Theorem | basendxnplusgndx 12742 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
⊢ (Base‘ndx) ≠
(+g‘ndx) |
|
Theorem | grpstrg 12743 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
|
Theorem | grpbaseg 12744 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
|
Theorem | grpplusgg 12745 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
|
Theorem | ressplusgd 12746 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
|
Theorem | mulrndx 12747 |
Index value of the df-mulr 12709 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (.r‘ndx) =
3 |
|
Theorem | mulridx 12748 |
Utility theorem: index-independent form of df-mulr 12709. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
⊢ .r = Slot
(.r‘ndx) |
|
Theorem | mulrslid 12749 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
|
Theorem | plusgndxnmulrndx 12750 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
⊢ (+g‘ndx) ≠
(.r‘ndx) |
|
Theorem | basendxnmulrndx 12751 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
⊢ (Base‘ndx) ≠
(.r‘ndx) |
|
Theorem | rngstrg 12752 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
|
Theorem | rngbaseg 12753 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
|
Theorem | rngplusgg 12754 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
|
Theorem | rngmulrg 12755 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
|
Theorem | starvndx 12756 |
Index value of the df-starv 12710 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (*𝑟‘ndx) =
4 |
|
Theorem | starvid 12757 |
Utility theorem: index-independent form of df-starv 12710. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
⊢ *𝑟 = Slot
(*𝑟‘ndx) |
|
Theorem | starvslid 12758 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
|
Theorem | starvndxnbasendx 12759 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
|
Theorem | starvndxnplusgndx 12760 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
|
Theorem | starvndxnmulrndx 12761 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
|
Theorem | ressmulrg 12762 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
|
Theorem | srngstrd 12763 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
|
Theorem | srngbased 12764 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
|
Theorem | srngplusgd 12765 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
|
Theorem | srngmulrd 12766 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
|
Theorem | srnginvld 12767 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
|
Theorem | scandx 12768 |
Index value of the df-sca 12711 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ (Scalar‘ndx) = 5 |
|
Theorem | scaid 12769 |
Utility theorem: index-independent form of scalar df-sca 12711. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
⊢ Scalar = Slot
(Scalar‘ndx) |
|
Theorem | scaslid 12770 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
|
Theorem | scandxnbasendx 12771 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
|
Theorem | scandxnplusgndx 12772 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
|
Theorem | scandxnmulrndx 12773 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
|
Theorem | vscandx 12774 |
Index value of the df-vsca 12712 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢ ( ·𝑠
‘ndx) = 6 |
|
Theorem | vscaid 12775 |
Utility theorem: index-independent form of scalar product df-vsca 12712.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
|
Theorem | vscandxnbasendx 12776 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |
|
Theorem | vscandxnplusgndx 12777 |
The slot for the scalar product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ ( ·𝑠
‘ndx) ≠ (+g‘ndx) |
|
Theorem | vscandxnmulrndx 12778 |
The slot for the scalar product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
⊢ ( ·𝑠
‘ndx) ≠ (.r‘ndx) |
|
Theorem | vscandxnscandx 12779 |
The slot for the scalar product is not the slot for the scalar field in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
⊢ ( ·𝑠
‘ndx) ≠ (Scalar‘ndx) |
|
Theorem | vscaslid 12780 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
|
Theorem | lmodstrd 12781 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
|
Theorem | lmodbased 12782 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
|
Theorem | lmodplusgd 12783 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
|
Theorem | lmodscad 12784 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
|
Theorem | lmodvscad 12785 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
|
Theorem | ipndx 12786 |
Index value of the df-ip 12713 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
⊢
(·𝑖‘ndx) = 8 |
|
Theorem | ipid 12787 |
Utility theorem: index-independent form of df-ip 12713. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
|
Theorem | ipslid 12788 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
|
Theorem | ipndxnbasendx 12789 |
The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.)
|
⊢
(·𝑖‘ndx) ≠
(Base‘ndx) |
|
Theorem | ipndxnplusgndx 12790 |
The slot for the inner product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 29-Oct-2024.)
|
⊢
(·𝑖‘ndx) ≠
(+g‘ndx) |
|
Theorem | ipndxnmulrndx 12791 |
The slot for the inner product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
⊢
(·𝑖‘ndx) ≠
(.r‘ndx) |
|
Theorem | slotsdifipndx 12792 |
The slot for the scalar is not the index of other slots. (Contributed by
AV, 12-Nov-2024.)
|
⊢ (( ·𝑠
‘ndx) ≠ (·𝑖‘ndx) ∧
(Scalar‘ndx) ≠
(·𝑖‘ndx)) |
|
Theorem | ipsstrd 12793 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
|
Theorem | ipsbased 12794 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
|
Theorem | ipsaddgd 12795 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
|
Theorem | ipsmulrd 12796 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
|
Theorem | ipsscad 12797 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
|
Theorem | ipsvscad 12798 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
|
Theorem | ipsipd 12799 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
|
Theorem | ressscag 12800 |
Scalar is unaffected by restriction. (Contributed by
Mario
Carneiro, 7-Dec-2014.)
|
⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |