HomeHome Intuitionistic Logic Explorer
Theorem List (p. 128 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12701-12800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembastg 12701 A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
 
Theoremunitg 12702 The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
(𝐵𝑉 (topGen‘𝐵) = 𝐵)
 
Theoremtgss 12703 Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
((𝐶𝑉𝐵𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
 
Theoremtgcl 12704 Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
(𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
 
Theoremtgclb 12705 The property tgcl 12704 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
(𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
 
Theoremtgtopon 12706 A basis generates a topology on 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.)
(𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘ 𝐵))
 
Theoremtopbas 12707 A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
(𝐽 ∈ Top → 𝐽 ∈ TopBases)
 
Theoremtgtop 12708 A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
(𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
 
Theoremeltop 12709 Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.)
(𝐽 ∈ Top → (𝐴𝐽𝐴 (𝐽 ∩ 𝒫 𝐴)))
 
Theoremeltop2 12710* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
(𝐽 ∈ Top → (𝐴𝐽 ↔ ∀𝑥𝐴𝑦𝐽 (𝑥𝑦𝑦𝐴)))
 
Theoremeltop3 12711* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
(𝐽 ∈ Top → (𝐴𝐽 ↔ ∃𝑥(𝑥𝐽𝐴 = 𝑥)))
 
Theoremtgdom 12712 A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
(𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)
 
Theoremtgiun 12713* The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
 
Theoremtgidm 12714 The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
(𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))
 
Theorembastop 12715 Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
(𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵))
 
Theoremtgtop11 12716 The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾)
 
Theoremen1top 12717 {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
(𝐽 ∈ Top → (𝐽 ≈ 1o𝐽 = {∅}))
 
Theoremtgss3 12718 A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
 
Theoremtgss2 12719* A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
 
Theorembasgen 12720 Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
((𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽)
 
Theorembasgen2 12721* Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
((𝐽 ∈ Top ∧ 𝐵𝐽 ∧ ∀𝑥𝐽𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥)) → (topGen‘𝐵) = 𝐽)
 
Theorem2basgeng 12722 Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
 
Theorembastop1 12723* A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
 
Theorembastop2 12724* A version of bastop1 12723 that doesn't have 𝐵𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.)
(𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
 
8.1.3  Examples of topologies
 
Theoremdistop 12725 The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
(𝐴𝑉 → 𝒫 𝐴 ∈ Top)
 
Theoremtopnex 12726 The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4427. (Contributed by BJ, 2-May-2021.)
Top ∉ V
 
Theoremdistopon 12727 The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
 
Theoremsn0topon 12728 The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.)
{∅} ∈ (TopOn‘∅)
 
Theoremsn0top 12729 The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.)
{∅} ∈ Top
 
Theoremepttop 12730* The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = 𝐴)} ∈ (TopOn‘𝐴))
 
Theoremdistps 12731 The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.)
𝐴 ∈ V    &   𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝒫 𝐴⟩}       𝐾 ∈ TopSp
 
8.1.4  Closure and interior
 
Syntaxccld 12732 Extend class notation with the set of closed sets of a topology.
class Clsd
 
Syntaxcnt 12733 Extend class notation with interior of a subset of a topology base set.
class int
 
Syntaxccl 12734 Extend class notation with closure of a subset of a topology base set.
class cls
 
Definitiondf-cld 12735* Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.)
Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
 
Definitiondf-ntr 12736* Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 12750. (Contributed by NM, 10-Sep-2006.)
int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
 
Definitiondf-cls 12737* Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 12751. (Contributed by NM, 3-Oct-2006.)
cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
 
Theoremfncld 12738 The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Clsd Fn Top
 
Theoremcldval 12739* The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
 
Theoremntrfval 12740* The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
 
Theoremclsfval 12741* The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
 
Theoremcldrcl 12742 Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
 
Theoremiscld 12743 The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
 
Theoremiscld2 12744 A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋𝑆) ∈ 𝐽))
 
Theoremcldss 12745 A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
𝑋 = 𝐽       (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
 
Theoremcldss2 12746 The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
𝑋 = 𝐽       (Clsd‘𝐽) ⊆ 𝒫 𝑋
 
Theoremcldopn 12747 The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
𝑋 = 𝐽       (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
 
Theoremdifopn 12748 The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
𝑋 = 𝐽       ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)
 
Theoremtopcld 12749 The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
 
Theoremntrval 12750 The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
 
Theoremclsval 12751* The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
 
Theorem0cld 12752 The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
(𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
 
Theoremuncld 12753 The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
 
Theoremcldcls 12754 A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
(𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
 
Theoremiuncld 12755* A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
 
Theoremunicld 12756 A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))
 
Theoremntropn 12757 The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
 
Theoremclsss 12758 Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆))
 
Theoremntrss 12759 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
 
Theoremsscls 12760 A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
 
Theoremntrss2 12761 A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
 
Theoremssntr 12762 An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))
 
Theoremntrss3 12763 The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋)
 
Theoremntrin 12764 A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
 
Theoremisopn3 12765 A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
 
Theoremntridm 12766 The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆))
 
Theoremclstop 12767 The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
 
Theoremntrtop 12768 The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
 
Theoremclsss2 12769 If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
𝑋 = 𝐽       ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)
 
Theoremclsss3 12770 The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
 
Theoremntrcls0 12771 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)
 
Theoremntreq0 12772* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
 
Theoremcls0 12773 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
(𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
 
Theoremntr0 12774 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
(𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅)
 
Theoremisopn3i 12775 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
((𝐽 ∈ Top ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
 
Theoremdiscld 12776 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
(𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
 
Theoremsn0cld 12777 The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
(Clsd‘{∅}) = {∅}
 
8.1.5  Neighborhoods
 
Syntaxcnei 12778 Extend class notation with neighborhood relation for topologies.
class nei
 
Definitiondf-nei 12779* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
 
Theoremneifval 12780* Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
 
Theoremneif 12781 The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
 
Theoremneiss2 12782 A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
 
Theoremneival 12783* Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
 
Theoremisnei 12784* The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
 
Theoremneiint 12785 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
 
Theoremisneip 12786* The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
 
Theoremneii1 12787 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁𝑋)
 
Theoremneisspw 12788 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
 
Theoremneii2 12789* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
 
Theoremneiss 12790 Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))
 
Theoremssnei 12791 A set is included in any of its neighborhoods. Generalization to subsets of elnei 12792. (Contributed by FL, 16-Nov-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
 
Theoremelnei 12792 A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃𝑁)
 
Theorem0nnei 12793 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
 
Theoremneipsm 12794* A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
 
Theoremopnneissb 12795 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremopnssneib 12796 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremssnei2 12797 Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneiss 12798 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneip 12799 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
 
Theoremtpnei 12800 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 12798. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >