ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lidl GIF version

Definition df-lidl 13802
Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
df-lidl LIdeal = (LSubSp ∘ ringLMod)

Detailed syntax breakdown of Definition df-lidl
StepHypRef Expression
1 clidl 13800 . 2 class LIdeal
2 clss 13685 . . 3 class LSubSp
3 crglmod 13767 . . 3 class ringLMod
42, 3ccom 4648 . 2 class (LSubSp ∘ ringLMod)
51, 4wceq 1364 1 wff LIdeal = (LSubSp ∘ ringLMod)
Colors of variables: wff set class
This definition is referenced by:  lidlvalg  13804  lidlmex  13808
  Copyright terms: Public domain W3C validator