| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlvalg | GIF version | ||
| Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlvalg | ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lidl 14398 | . . 3 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
| 2 | 1 | fveq1i 5604 | . 2 ⊢ (LIdeal‘𝑊) = ((LSubSp ∘ ringLMod)‘𝑊) |
| 3 | rlmfn 14382 | . . 3 ⊢ ringLMod Fn V | |
| 4 | elex 2791 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 5 | fvco2 5676 | . . 3 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | |
| 6 | 3, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((LSubSp ∘ ringLMod)‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| 7 | 2, 6 | eqtrid 2254 | 1 ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∘ ccom 4700 Fn wfn 5289 ‘cfv 5294 LSubSpclss 14281 ringLModcrglmod 14363 LIdealclidl 14396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-sra 14364 df-rgmod 14365 df-lidl 14398 |
| This theorem is referenced by: lidlex 14402 lidlss 14405 islidlm 14408 lidl0cl 14412 lidlacl 14413 lidlnegcl 14414 lidl0 14418 lidl1 14419 rspcl 14420 rspssp 14423 lidlrsppropdg 14424 |
| Copyright terms: Public domain | W3C validator |