![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version |
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
Ref | Expression |
---|---|
lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
Ref | Expression |
---|---|
lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lssm 13849 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
2 | 1 | funmpt2 5293 | . . . . . 6 ⊢ Fun LSubSp |
3 | rlmfn 13949 | . . . . . . 7 ⊢ ringLMod Fn V | |
4 | fnfun 5351 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
6 | funco 5294 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
8 | df-lidl 13965 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
9 | 8 | funeqi 5275 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
11 | funrel 5271 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
14 | 13 | eleq2i 2260 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
16 | relelfvdm 5586 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
18 | 17 | elexd 2773 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {crab 2476 Vcvv 2760 𝒫 cpw 3601 dom cdm 4659 ∘ ccom 4663 Rel wrel 4664 Fun wfun 5248 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Scalarcsca 12698 ·𝑠 cvsca 12699 LSubSpclss 13848 ringLModcrglmod 13930 LIdealclidl 13963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 |
This theorem is referenced by: lidlss 13972 lidlssbas 13973 lidlbas 13974 islidlm 13975 2idlval 13998 2idlelb 14001 |
Copyright terms: Public domain | W3C validator |