| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version | ||
| Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lssm 14325 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 2 | 1 | funmpt2 5357 | . . . . . 6 ⊢ Fun LSubSp |
| 3 | rlmfn 14425 | . . . . . . 7 ⊢ ringLMod Fn V | |
| 4 | fnfun 5418 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
| 6 | funco 5358 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
| 7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
| 8 | df-lidl 14441 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
| 9 | 8 | funeqi 5339 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
| 10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
| 11 | funrel 5335 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
| 13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 14 | 13 | eleq2i 2296 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
| 15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
| 16 | relelfvdm 5661 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
| 17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
| 18 | 17 | elexd 2813 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 {crab 2512 Vcvv 2799 𝒫 cpw 3649 dom cdm 4719 ∘ ccom 4723 Rel wrel 4724 Fun wfun 5312 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Scalarcsca 13121 ·𝑠 cvsca 13122 LSubSpclss 14324 ringLModcrglmod 14406 LIdealclidl 14439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-lssm 14325 df-sra 14407 df-rgmod 14408 df-lidl 14441 |
| This theorem is referenced by: lidlss 14448 lidlssbas 14449 lidlbas 14450 islidlm 14451 2idlval 14474 2idlelb 14477 |
| Copyright terms: Public domain | W3C validator |