| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version | ||
| Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lssm 14302 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 2 | 1 | funmpt2 5353 | . . . . . 6 ⊢ Fun LSubSp |
| 3 | rlmfn 14402 | . . . . . . 7 ⊢ ringLMod Fn V | |
| 4 | fnfun 5414 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
| 6 | funco 5354 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
| 7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
| 8 | df-lidl 14418 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
| 9 | 8 | funeqi 5335 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
| 10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
| 11 | funrel 5331 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
| 13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 14 | 13 | eleq2i 2296 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
| 15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
| 16 | relelfvdm 5655 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
| 17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
| 18 | 17 | elexd 2813 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 {crab 2512 Vcvv 2799 𝒫 cpw 3649 dom cdm 4716 ∘ ccom 4720 Rel wrel 4721 Fun wfun 5308 Fn wfn 5309 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 Scalarcsca 13099 ·𝑠 cvsca 13100 LSubSpclss 14301 ringLModcrglmod 14383 LIdealclidl 14416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-lssm 14302 df-sra 14384 df-rgmod 14385 df-lidl 14418 |
| This theorem is referenced by: lidlss 14425 lidlssbas 14426 lidlbas 14427 islidlm 14428 2idlval 14451 2idlelb 14454 |
| Copyright terms: Public domain | W3C validator |