ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlmex GIF version

Theorem lidlmex 14287
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
lidlmex.i 𝐼 = (LIdeal‘𝑊)
Assertion
Ref Expression
lidlmex (𝑈𝐼𝑊 ∈ V)

Proof of Theorem lidlmex
Dummy variables 𝑎 𝑏 𝑗 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lssm 14165 . . . . . . 7 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
21funmpt2 5316 . . . . . 6 Fun LSubSp
3 rlmfn 14265 . . . . . . 7 ringLMod Fn V
4 fnfun 5377 . . . . . . 7 (ringLMod Fn V → Fun ringLMod)
53, 4ax-mp 5 . . . . . 6 Fun ringLMod
6 funco 5317 . . . . . 6 ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod))
72, 5, 6mp2an 426 . . . . 5 Fun (LSubSp ∘ ringLMod)
8 df-lidl 14281 . . . . . 6 LIdeal = (LSubSp ∘ ringLMod)
98funeqi 5298 . . . . 5 (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod))
107, 9mpbir 146 . . . 4 Fun LIdeal
11 funrel 5294 . . . 4 (Fun LIdeal → Rel LIdeal)
1210, 11ax-mp 5 . . 3 Rel LIdeal
13 lidlmex.i . . . . 5 𝐼 = (LIdeal‘𝑊)
1413eleq2i 2273 . . . 4 (𝑈𝐼𝑈 ∈ (LIdeal‘𝑊))
1514biimpi 120 . . 3 (𝑈𝐼𝑈 ∈ (LIdeal‘𝑊))
16 relelfvdm 5618 . . 3 ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal)
1712, 15, 16sylancr 414 . 2 (𝑈𝐼𝑊 ∈ dom LIdeal)
1817elexd 2787 1 (𝑈𝐼𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  𝒫 cpw 3618  dom cdm 4680  ccom 4684  Rel wrel 4685  Fun wfun 5271   Fn wfn 5272  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  Scalarcsca 12962   ·𝑠 cvsca 12963  LSubSpclss 14164  ringLModcrglmod 14246  LIdealclidl 14279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977  df-lssm 14165  df-sra 14247  df-rgmod 14248  df-lidl 14281
This theorem is referenced by:  lidlss  14288  lidlssbas  14289  lidlbas  14290  islidlm  14291  2idlval  14314  2idlelb  14317
  Copyright terms: Public domain W3C validator