![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version |
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
Ref | Expression |
---|---|
lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
Ref | Expression |
---|---|
lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lssm 13852 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
2 | 1 | funmpt2 5294 | . . . . . 6 ⊢ Fun LSubSp |
3 | rlmfn 13952 | . . . . . . 7 ⊢ ringLMod Fn V | |
4 | fnfun 5352 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
6 | funco 5295 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
8 | df-lidl 13968 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
9 | 8 | funeqi 5276 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
11 | funrel 5272 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
14 | 13 | eleq2i 2260 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
16 | relelfvdm 5587 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
18 | 17 | elexd 2773 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {crab 2476 Vcvv 2760 𝒫 cpw 3602 dom cdm 4660 ∘ ccom 4664 Rel wrel 4665 Fun wfun 5249 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 Scalarcsca 12701 ·𝑠 cvsca 12702 LSubSpclss 13851 ringLModcrglmod 13933 LIdealclidl 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-lssm 13852 df-sra 13934 df-rgmod 13935 df-lidl 13968 |
This theorem is referenced by: lidlss 13975 lidlssbas 13976 lidlbas 13977 islidlm 13978 2idlval 14001 2idlelb 14004 |
Copyright terms: Public domain | W3C validator |