| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version | ||
| Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lssm 13985 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
| 2 | 1 | funmpt2 5298 | . . . . . 6 ⊢ Fun LSubSp |
| 3 | rlmfn 14085 | . . . . . . 7 ⊢ ringLMod Fn V | |
| 4 | fnfun 5356 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
| 6 | funco 5299 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
| 7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
| 8 | df-lidl 14101 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
| 9 | 8 | funeqi 5280 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
| 10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
| 11 | funrel 5276 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
| 13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 14 | 13 | eleq2i 2263 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
| 15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
| 16 | relelfvdm 5593 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
| 17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
| 18 | 17 | elexd 2776 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 {crab 2479 Vcvv 2763 𝒫 cpw 3606 dom cdm 4664 ∘ ccom 4668 Rel wrel 4669 Fun wfun 5253 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 Scalarcsca 12783 ·𝑠 cvsca 12784 LSubSpclss 13984 ringLModcrglmod 14066 LIdealclidl 14099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-lssm 13985 df-sra 14067 df-rgmod 14068 df-lidl 14101 |
| This theorem is referenced by: lidlss 14108 lidlssbas 14109 lidlbas 14110 islidlm 14111 2idlval 14134 2idlelb 14137 |
| Copyright terms: Public domain | W3C validator |