![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlmex | GIF version |
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
Ref | Expression |
---|---|
lidlmex.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
Ref | Expression |
---|---|
lidlmex | ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lssm 13686 | . . . . . . 7 ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) | |
2 | 1 | funmpt2 5274 | . . . . . 6 ⊢ Fun LSubSp |
3 | rlmfn 13786 | . . . . . . 7 ⊢ ringLMod Fn V | |
4 | fnfun 5332 | . . . . . . 7 ⊢ (ringLMod Fn V → Fun ringLMod) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Fun ringLMod |
6 | funco 5275 | . . . . . 6 ⊢ ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod)) | |
7 | 2, 5, 6 | mp2an 426 | . . . . 5 ⊢ Fun (LSubSp ∘ ringLMod) |
8 | df-lidl 13802 | . . . . . 6 ⊢ LIdeal = (LSubSp ∘ ringLMod) | |
9 | 8 | funeqi 5256 | . . . . 5 ⊢ (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod)) |
10 | 7, 9 | mpbir 146 | . . . 4 ⊢ Fun LIdeal |
11 | funrel 5252 | . . . 4 ⊢ (Fun LIdeal → Rel LIdeal) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Rel LIdeal |
13 | lidlmex.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
14 | 13 | eleq2i 2256 | . . . 4 ⊢ (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ (LIdeal‘𝑊)) |
15 | 14 | biimpi 120 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LIdeal‘𝑊)) |
16 | relelfvdm 5566 | . . 3 ⊢ ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal) | |
17 | 12, 15, 16 | sylancr 414 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ dom LIdeal) |
18 | 17 | elexd 2765 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 {crab 2472 Vcvv 2752 𝒫 cpw 3590 dom cdm 4644 ∘ ccom 4648 Rel wrel 4649 Fun wfun 5229 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 Scalarcsca 12595 ·𝑠 cvsca 12596 LSubSpclss 13685 ringLModcrglmod 13767 LIdealclidl 13800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-mulr 12606 df-sca 12608 df-vsca 12609 df-ip 12610 df-lssm 13686 df-sra 13768 df-rgmod 13769 df-lidl 13802 |
This theorem is referenced by: lidlss 13809 lidlssbas 13810 lidlbas 13811 islidlm 13812 2idlelb 13837 |
Copyright terms: Public domain | W3C validator |