ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlmex GIF version

Theorem lidlmex 13808
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
lidlmex.i 𝐼 = (LIdeal‘𝑊)
Assertion
Ref Expression
lidlmex (𝑈𝐼𝑊 ∈ V)

Proof of Theorem lidlmex
Dummy variables 𝑎 𝑏 𝑗 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lssm 13686 . . . . . . 7 LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
21funmpt2 5274 . . . . . 6 Fun LSubSp
3 rlmfn 13786 . . . . . . 7 ringLMod Fn V
4 fnfun 5332 . . . . . . 7 (ringLMod Fn V → Fun ringLMod)
53, 4ax-mp 5 . . . . . 6 Fun ringLMod
6 funco 5275 . . . . . 6 ((Fun LSubSp ∧ Fun ringLMod) → Fun (LSubSp ∘ ringLMod))
72, 5, 6mp2an 426 . . . . 5 Fun (LSubSp ∘ ringLMod)
8 df-lidl 13802 . . . . . 6 LIdeal = (LSubSp ∘ ringLMod)
98funeqi 5256 . . . . 5 (Fun LIdeal ↔ Fun (LSubSp ∘ ringLMod))
107, 9mpbir 146 . . . 4 Fun LIdeal
11 funrel 5252 . . . 4 (Fun LIdeal → Rel LIdeal)
1210, 11ax-mp 5 . . 3 Rel LIdeal
13 lidlmex.i . . . . 5 𝐼 = (LIdeal‘𝑊)
1413eleq2i 2256 . . . 4 (𝑈𝐼𝑈 ∈ (LIdeal‘𝑊))
1514biimpi 120 . . 3 (𝑈𝐼𝑈 ∈ (LIdeal‘𝑊))
16 relelfvdm 5566 . . 3 ((Rel LIdeal ∧ 𝑈 ∈ (LIdeal‘𝑊)) → 𝑊 ∈ dom LIdeal)
1712, 15, 16sylancr 414 . 2 (𝑈𝐼𝑊 ∈ dom LIdeal)
1817elexd 2765 1 (𝑈𝐼𝑊 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  𝒫 cpw 3590  dom cdm 4644  ccom 4648  Rel wrel 4649  Fun wfun 5229   Fn wfn 5230  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  Scalarcsca 12595   ·𝑠 cvsca 12596  LSubSpclss 13685  ringLModcrglmod 13767  LIdealclidl 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-mulr 12606  df-sca 12608  df-vsca 12609  df-ip 12610  df-lssm 13686  df-sra 13768  df-rgmod 13769  df-lidl 13802
This theorem is referenced by:  lidlss  13809  lidlssbas  13810  lidlbas  13811  islidlm  13812  2idlelb  13837
  Copyright terms: Public domain W3C validator