Theorem List for Intuitionistic Logic Explorer - 14401-14500 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | basgen2 14401* |
Given a topology 𝐽, show that a subset 𝐵
satisfying the third
antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81.
(Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro,
2-Sep-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) |
| |
| Theorem | 2basgeng 14402 |
Conditions that determine the equality of two generated topologies.
(Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon,
5-Mar-2023.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) |
| |
| Theorem | bastop1 14403* |
A subset of a topology is a basis for the topology iff every member of
the topology is a union of members of the basis. We use the
idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a
basis for
topology 𝐽 " since we do not have a
separate notation for this.
Definition 15.35 of [Schechter] p.
428. (Contributed by NM,
2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
| |
| Theorem | bastop2 14404* |
A version of bastop1 14403 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent.
(Contributed by NM, 3-Feb-2008.)
|
| ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
| |
| 9.1.3 Examples of topologies
|
| |
| Theorem | distop 14405 |
The discrete topology on a set 𝐴. Part of Example 2 in [Munkres]
p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro,
19-Mar-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
| |
| Theorem | topnex 14406 |
The class of all topologies is a proper class. The proof uses
discrete topologies and pwnex 4485. (Contributed by BJ, 2-May-2021.)
|
| ⊢ Top ∉ V |
| |
| Theorem | distopon 14407 |
The discrete topology on a set 𝐴, with base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| |
| Theorem | sn0topon 14408 |
The singleton of the empty set is a topology on the empty set.
(Contributed by Mario Carneiro, 13-Aug-2015.)
|
| ⊢ {∅} ∈
(TopOn‘∅) |
| |
| Theorem | sn0top 14409 |
The singleton of the empty set is a topology. (Contributed by Stefan
Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro,
13-Aug-2015.)
|
| ⊢ {∅} ∈ Top |
| |
| Theorem | epttop 14410* |
The excluded point topology. (Contributed by Mario Carneiro,
3-Sep-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) |
| |
| Theorem | distps 14411 |
The discrete topology on a set 𝐴 expressed as a topological space.
(Contributed by FL, 20-Aug-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx),
𝐴〉,
〈(TopSet‘ndx), 𝒫 𝐴〉} ⇒ ⊢ 𝐾 ∈ TopSp |
| |
| 9.1.4 Closure and interior
|
| |
| Syntax | ccld 14412 |
Extend class notation with the set of closed sets of a topology.
|
| class Clsd |
| |
| Syntax | cnt 14413 |
Extend class notation with interior of a subset of a topology base set.
|
| class int |
| |
| Syntax | ccl 14414 |
Extend class notation with closure of a subset of a topology base set.
|
| class cls |
| |
| Definition | df-cld 14415* |
Define a function on topologies whose value is the set of closed sets of
the topology. (Contributed by NM, 2-Oct-2006.)
|
| ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
| |
| Definition | df-ntr 14416* |
Define a function on topologies whose value is the interior function on
the subsets of the base set. See ntrval 14430. (Contributed by NM,
10-Sep-2006.)
|
| ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
| |
| Definition | df-cls 14417* |
Define a function on topologies whose value is the closure function on
the subsets of the base set. See clsval 14431. (Contributed by NM,
3-Oct-2006.)
|
| ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) |
| |
| Theorem | fncld 14418 |
The closed-set generator is a well-behaved function. (Contributed by
Stefan O'Rear, 1-Feb-2015.)
|
| ⊢ Clsd Fn Top |
| |
| Theorem | cldval 14419* |
The set of closed sets of a topology. (Note that the set of open sets
is just the topology itself, so we don't have a separate definition.)
(Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
| |
| Theorem | ntrfval 14420* |
The interior function on the subsets of a topology's base set.
(Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪
(𝐽 ∩ 𝒫 𝑥))) |
| |
| Theorem | clsfval 14421* |
The closure function on the subsets of a topology's base set.
(Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩
{𝑦 ∈
(Clsd‘𝐽) ∣
𝑥 ⊆ 𝑦})) |
| |
| Theorem | cldrcl 14422 |
Reverse closure of the closed set operation. (Contributed by Stefan
O'Rear, 22-Feb-2015.)
|
| ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| |
| Theorem | iscld 14423 |
The predicate "the class 𝑆 is a closed set". (Contributed
by NM,
2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| |
| Theorem | iscld2 14424 |
A subset of the underlying set of a topology is closed iff its
complement is open. (Contributed by NM, 4-Oct-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
| |
| Theorem | cldss 14425 |
A closed set is a subset of the underlying set of a topology.
(Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear,
22-Feb-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| |
| Theorem | cldss2 14426 |
The set of closed sets is contained in the powerset of the base.
(Contributed by Mario Carneiro, 6-Jan-2014.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| |
| Theorem | cldopn 14427 |
The complement of a closed set is open. (Contributed by NM,
5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| |
| Theorem | difopn 14428 |
The difference of a closed set with an open set is open. (Contributed
by Mario Carneiro, 6-Jan-2014.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| |
| Theorem | topcld 14429 |
The underlying set of a topology is closed. Part of Theorem 6.1(1) of
[Munkres] p. 93. (Contributed by NM,
3-Oct-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| |
| Theorem | ntrval 14430 |
The interior of a subset of a topology's base set is the union of all
the open sets it includes. Definition of interior of [Munkres] p. 94.
(Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| |
| Theorem | clsval 14431* |
The closure of a subset of a topology's base set is the intersection of
all the closed sets that include it. Definition of closure of [Munkres]
p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| |
| Theorem | 0cld 14432 |
The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93.
(Contributed by NM, 4-Oct-2006.)
|
| ⊢ (𝐽 ∈ Top → ∅ ∈
(Clsd‘𝐽)) |
| |
| Theorem | uncld 14433 |
The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of
[Munkres] p. 93. (Contributed by NM,
5-Oct-2006.)
|
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) |
| |
| Theorem | cldcls 14434 |
A closed subset equals its own closure. (Contributed by NM,
15-Mar-2007.)
|
| ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) |
| |
| Theorem | iuncld 14435* |
A finite indexed union of closed sets is closed. (Contributed by Mario
Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| |
| Theorem | unicld 14436 |
A finite union of closed sets is closed. (Contributed by Mario
Carneiro, 19-Sep-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪
𝐴 ∈ (Clsd‘𝐽)) |
| |
| Theorem | ntropn 14437 |
The interior of a subset of a topology's underlying set is open.
(Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| |
| Theorem | clsss 14438 |
Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
| |
| Theorem | ntrss 14439 |
Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)
(Revised by Jim Kingdon, 11-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| |
| Theorem | sscls 14440 |
A subset of a topology's underlying set is included in its closure.
(Contributed by NM, 22-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| |
| Theorem | ntrss2 14441 |
A subset includes its interior. (Contributed by NM, 3-Oct-2007.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| |
| Theorem | ssntr 14442 |
An open subset of a set is a subset of the set's interior. (Contributed
by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
| |
| Theorem | ntrss3 14443 |
The interior of a subset of a topological space is included in the
space. (Contributed by NM, 1-Oct-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) |
| |
| Theorem | ntrin 14444 |
A pairwise intersection of interiors is the interior of the
intersection. This does not always hold for arbitrary intersections.
(Contributed by Jeff Hankins, 31-Aug-2009.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) |
| |
| Theorem | isopn3 14445 |
A subset is open iff it equals its own interior. (Contributed by NM,
9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| |
| Theorem | ntridm 14446 |
The interior operation is idempotent. (Contributed by NM,
2-Oct-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆)) |
| |
| Theorem | clstop 14447 |
The closure of a topology's underlying set is the entire set.
(Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon,
11-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) |
| |
| Theorem | ntrtop 14448 |
The interior of a topology's underlying set is the entire set.
(Contributed by NM, 12-Sep-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
| |
| Theorem | clsss2 14449 |
If a subset is included in a closed set, so is the subset's closure.
(Contributed by NM, 22-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
| |
| Theorem | clsss3 14450 |
The closure of a subset of a topological space is included in the space.
(Contributed by NM, 26-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| |
| Theorem | ntrcls0 14451 |
A subset whose closure has an empty interior also has an empty interior.
(Contributed by NM, 4-Oct-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
| |
| Theorem | ntreq0 14452* |
Two ways to say that a subset has an empty interior. (Contributed by
NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |
| |
| Theorem | cls0 14453 |
The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof
shortened by Jim Kingdon, 12-Mar-2023.)
|
| ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘∅) =
∅) |
| |
| Theorem | ntr0 14454 |
The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
|
| ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) =
∅) |
| |
| Theorem | isopn3i 14455 |
An open subset equals its own interior. (Contributed by Mario Carneiro,
30-Dec-2016.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| |
| Theorem | discld 14456 |
The open sets of a discrete topology are closed and its closed sets are
open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro,
7-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴) |
| |
| Theorem | sn0cld 14457 |
The closed sets of the topology {∅}.
(Contributed by FL,
5-Jan-2009.)
|
| ⊢ (Clsd‘{∅}) =
{∅} |
| |
| 9.1.5 Neighborhoods
|
| |
| Syntax | cnei 14458 |
Extend class notation with neighborhood relation for topologies.
|
| class nei |
| |
| Definition | df-nei 14459* |
Define a function on topologies whose value is a map from a subset to
its neighborhoods. (Contributed by NM, 11-Feb-2007.)
|
| ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈
𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
| |
| Theorem | neifval 14460* |
Value of the neighborhood function on the subsets of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) |
| |
| Theorem | neif 14461 |
The neighborhood function is a function from the set of the subsets of
the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised
by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) |
| |
| Theorem | neiss2 14462 |
A set with a neighborhood is a subset of the base set of a topology.
(This theorem depends on a function's value being empty outside of its
domain, but it will make later theorems simpler to state.) (Contributed
by NM, 12-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
| |
| Theorem | neival 14463* |
Value of the set of neighborhoods of a subset of the base set of a
topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) |
| |
| Theorem | isnei 14464* |
The predicate "the class 𝑁 is a neighborhood of 𝑆".
(Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro,
11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| |
| Theorem | neiint 14465 |
An intuitive definition of a neighborhood in terms of interior.
(Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario
Carneiro, 11-Nov-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
| |
| Theorem | isneip 14466* |
The predicate "the class 𝑁 is a neighborhood of point 𝑃".
(Contributed by NM, 26-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| |
| Theorem | neii1 14467 |
A neighborhood is included in the topology's base set. (Contributed by
NM, 12-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) |
| |
| Theorem | neisspw 14468 |
The neighborhoods of any set are subsets of the base set. (Contributed
by Stefan O'Rear, 6-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
| |
| Theorem | neii2 14469* |
Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
| |
| Theorem | neiss 14470 |
Any neighborhood of a set 𝑆 is also a neighborhood of any subset
𝑅
⊆ 𝑆. Similar
to Proposition 1 of [BourbakiTop1] p.
I.2.
(Contributed by FL, 25-Sep-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
| |
| Theorem | ssnei 14471 |
A set is included in any of its neighborhoods. Generalization to
subsets of elnei 14472. (Contributed by FL, 16-Nov-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) |
| |
| Theorem | elnei 14472 |
A point belongs to any of its neighborhoods. Property Viii of
[BourbakiTop1] p. I.3. (Contributed
by FL, 28-Sep-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) |
| |
| Theorem | 0nnei 14473 |
The empty set is not a neighborhood of a nonempty set. (Contributed by
FL, 18-Sep-2007.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈
((nei‘𝐽)‘𝑆)) |
| |
| Theorem | neipsm 14474* |
A neighborhood of a set is a neighborhood of every point in the set.
Proposition 1 of [BourbakiTop1] p.
I.2. (Contributed by FL,
16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
| |
| Theorem | opnneissb 14475 |
An open set is a neighborhood of any of its subsets. (Contributed by
FL, 2-Oct-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| |
| Theorem | opnssneib 14476 |
Any superset of an open set is a neighborhood of it. (Contributed by
NM, 14-Feb-2007.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| |
| Theorem | ssnei2 14477 |
Any subset 𝑀 of 𝑋 containing a
neighborhood 𝑁 of a set 𝑆
is a neighborhood of this set. Generalization to subsets of Property
Vi of [BourbakiTop1] p. I.3. (Contributed by FL,
2-Oct-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
| |
| Theorem | opnneiss 14478 |
An open set is a neighborhood of any of its subsets. (Contributed by NM,
13-Feb-2007.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) |
| |
| Theorem | opnneip 14479 |
An open set is a neighborhood of any of its members. (Contributed by NM,
8-Mar-2007.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| |
| Theorem | tpnei 14480 |
The underlying set of a topology is a neighborhood of any of its
subsets. Special case of opnneiss 14478. (Contributed by FL,
2-Oct-2006.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) |
| |
| Theorem | neiuni 14481 |
The union of the neighborhoods of a set equals the topology's underlying
set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro,
9-Apr-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪
((nei‘𝐽)‘𝑆)) |
| |
| Theorem | topssnei 14482 |
A finer topology has more neighborhoods. (Contributed by Mario
Carneiro, 9-Apr-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |
| |
| Theorem | innei 14483 |
The intersection of two neighborhoods of a set is also a neighborhood of
the set. Generalization to subsets of Property Vii of [BourbakiTop1]
p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) |
| |
| Theorem | opnneiid 14484 |
Only an open set is a neighborhood of itself. (Contributed by FL,
2-Oct-2006.)
|
| ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
| |
| Theorem | neissex 14485* |
For any neighborhood 𝑁 of 𝑆, there is a neighborhood
𝑥
of
𝑆 such that 𝑁 is a neighborhood of all
subsets of 𝑥.
Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3.
(Contributed by FL, 2-Oct-2006.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
| |
| Theorem | 0nei 14486 |
The empty set is a neighborhood of itself. (Contributed by FL,
10-Dec-2006.)
|
| ⊢ (𝐽 ∈ Top → ∅ ∈
((nei‘𝐽)‘∅)) |
| |
| 9.1.6 Subspace topologies
|
| |
| Theorem | restrcl 14487 |
Reverse closure for the subspace topology. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon,
23-Mar-2023.)
|
| ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
| |
| Theorem | restbasg 14488 |
A subspace topology basis is a basis. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐵 ↾t 𝐴) ∈ TopBases) |
| |
| Theorem | tgrest 14489 |
A subspace can be generated by restricted sets from a basis for the
original topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
(Proof shortened by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) |
| |
| Theorem | resttop 14490 |
A subspace topology is a topology. Definition of subspace topology in
[Munkres] p. 89. 𝐴 is normally a subset of
the base set of 𝐽.
(Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro,
1-May-2015.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
| |
| Theorem | resttopon 14491 |
A subspace topology is a topology on the base set. (Contributed by
Mario Carneiro, 13-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| |
| Theorem | restuni 14492 |
The underlying set of a subspace topology. (Contributed by FL,
5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| |
| Theorem | stoig 14493 |
The topological space built with a subspace topology. (Contributed by
FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉,
〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
| |
| Theorem | restco 14494 |
Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.)
(Revised by Mario Carneiro, 1-May-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) |
| |
| Theorem | restabs 14495 |
Equivalence of being a subspace of a subspace and being a subspace of the
original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened
by Mario Carneiro, 1-May-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) |
| |
| Theorem | restin 14496 |
When the subspace region is not a subset of the base of the topology,
the resulting set is the same as the subspace restricted to the base.
(Contributed by Mario Carneiro, 15-Dec-2013.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
| |
| Theorem | restuni2 14497 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 21-Mar-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
| |
| Theorem | resttopon2 14498 |
The underlying set of a subspace topology. (Contributed by Mario
Carneiro, 13-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
| |
| Theorem | rest0 14499 |
The subspace topology induced by the topology 𝐽 on the empty set.
(Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro,
1-May-2015.)
|
| ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) =
{∅}) |
| |
| Theorem | restsn 14500 |
The only subspace topology induced by the topology {∅}.
(Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro,
15-Dec-2013.)
|
| ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t
𝐴) =
{∅}) |