HomeHome Intuitionistic Logic Explorer
Theorem List (p. 145 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14401-14500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzringgrp 14401 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
ring ∈ Grp
 
Theoremzringbas 14402 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
ℤ = (Base‘ℤring)
 
Theoremzringplusg 14403 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
+ = (+g‘ℤring)
 
Theoremzringmulg 14404 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵))
 
Theoremzringmulr 14405 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
· = (.r‘ℤring)
 
Theoremzring0 14406 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
0 = (0g‘ℤring)
 
Theoremzring1 14407 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
1 = (1r‘ℤring)
 
Theoremzringnzr 14408 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
ring ∈ NzRing
 
Theoremdvdsrzring 14409 Ring divisibility in the ring of integers corresponds to ordinary divisibility in . (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
∥ = (∥r‘ℤring)
 
Theoremzringinvg 14410 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
(𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴))
 
Theoremzringsubgval 14411 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
= (-g‘ℤring)       ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋𝑌) = (𝑋 𝑌))
 
Theoremzringmpg 14412 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
 
Theoremexpghmap 14413* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
𝑀 = (mulGrp‘ℂfld)    &   𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
 
Theoremmulgghm2 14414* The powers of a group element give a homomorphism from to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
 
Theoremmulgrhm 14415* The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
 
Theoremmulgrhm2 14416* The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14417 Map the rationals into a field, or the integers into a ring.
class ℤRHom
 
Syntaxczlm 14418 Augment an abelian group with vector space operations to turn it into a -module.
class ℤMod
 
Syntaxczn 14419 The ring of integers modulo 𝑛.
class ℤ/n
 
Definitiondf-zrh 14420 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 13500). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
 
Definitiondf-zlm 14421 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
 
Definitiondf-zn 14422* Define the ring of integers mod 𝑛. This is literally the quotient ring of by the ideal 𝑛, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
 
Theoremzrhval 14423 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       𝐿 = (ℤring RingHom 𝑅)
 
Theoremzrhvalg 14424 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅𝑉𝐿 = (ℤring RingHom 𝑅))
 
Theoremzrhval2 14425* Alternate value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
 
Theoremzrhmulg 14426 Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁 · 1 ))
 
Theoremzrhex 14427 Set existence for ℤRHom. (Contributed by Jim Kingdon, 19-May-2025.)
𝐿 = (ℤRHom‘𝑅)       (𝑅𝑉𝐿 ∈ V)
 
Theoremzrhrhmb 14428 The ℤRHom homomorphism is the unique ring homomorphism from . (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → (𝐹 ∈ (ℤring RingHom 𝑅) ↔ 𝐹 = 𝐿))
 
Theoremzrhrhm 14429 The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
 
Theoremzrh1 14430 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐿‘1) = 1 )
 
Theoremzrh0 14431 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐿‘0) = 0 )
 
Theoremzrhpropd 14432* The ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
 
Theoremzlmval 14433 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
 
Theoremzlmlemg 14434 Lemma for zlmbasg 14435 and zlmplusgg 14436. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝐸‘ndx) ≠ (Scalar‘ndx)    &   (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)       (𝐺𝑉 → (𝐸𝐺) = (𝐸𝑊))
 
Theoremzlmbasg 14435 Base set of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐵 = (Base‘𝐺)       (𝐺𝑉𝐵 = (Base‘𝑊))
 
Theoremzlmplusgg 14436 Group operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    + = (+g𝐺)       (𝐺𝑉+ = (+g𝑊))
 
Theoremzlmmulrg 14437 Ring operation of a -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    · = (.r𝐺)       (𝐺𝑉· = (.r𝑊))
 
Theoremzlmsca 14438 Scalar ring of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
𝑊 = (ℤMod‘𝐺)       (𝐺𝑉 → ℤring = (Scalar‘𝑊))
 
Theoremzlmvscag 14439 Scalar multiplication operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉· = ( ·𝑠𝑊))
 
Theoremznlidl 14440 The set 𝑛 is an ideal in . (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)       (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
 
Theoremzncrng2 14441 Making a commutative ring as a quotient of and 𝑛. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))       (𝑁 ∈ ℤ → 𝑈 ∈ CRing)
 
Theoremznval 14442 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = ((𝐹 ∘ ≤ ) ∘ 𝐹)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznle 14443 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)       (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
 
Theoremznval2 14444 Self-referential expression for the ℤ/n structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &    = (le‘𝑌)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznbaslemnn 14445 Lemma for znbas 14450. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ∈ ℕ    &   (𝐸‘ndx) ≠ (le‘ndx)       (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))
 
Theoremznbas2 14446 The base set of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌))
 
Theoremznadd 14447 The additive structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))
 
Theoremznmul 14448 The multiplicative structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (.r𝑈) = (.r𝑌))
 
Theoremznzrh 14449 The ring homomorphism of ℤ/n is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌))
 
Theoremznbas 14450 The base set of ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝑅 = (ℤring ~QG (𝑆‘{𝑁}))       (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌))
 
Theoremzncrng 14451 ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0𝑌 ∈ CRing)
 
Theoremznzrh2 14452* The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
 
Theoremznzrhval 14453 The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴] )
 
Theoremznzrhfo 14454 The ring homomorphism is a surjection onto ℤ/n. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
 
Theoremzndvds 14455 Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
 
Theoremzndvds0 14456 Special case of zndvds 14455 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)    &    0 = (0g𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = 0𝑁𝐴))
 
Theoremznf1o 14457 The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))       (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
 
Theoremznle2 14458 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)       (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
 
Theoremznleval 14459 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)    &   𝑋 = (Base‘𝑌)       (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
 
Theoremznleval2 14460 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)    &   𝑋 = (Base‘𝑌)       ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
 
Theoremznfi 14461 The ℤ/n structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)       (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
 
Theoremznhash 14462 The ℤ/n structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)       (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
 
Theoremznidom 14463 The ℤ/n structure is an integral domain when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
 
Theoremznidomb 14464 The ℤ/n structure is a domain precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
 
Theoremznunit 14465 The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝑈 = (Unit‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremznrrg 14466 The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝑈 = (Unit‘𝑌)    &   𝐸 = (RLReg‘𝑌)       (𝑁 ∈ ℕ → 𝐸 = 𝑈)
 
PART 8  BASIC LINEAR ALGEBRA

According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13805), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13804).

For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.

 
8.1  Abstract multivariate polynomials
 
8.1.1  Definition and basic properties
 
Syntaxcmps 14467 Multivariate power series.
class mPwSer
 
Syntaxcmpl 14468 Multivariate polynomials.
class mPoly
 
Definitiondf-psr 14469* Define the algebra of power series over the index set 𝑖 and with coefficients from the ring 𝑟. (Contributed by Mario Carneiro, 21-Mar-2015.)
mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
 
Definitiondf-mplcoe 14470* Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is 𝑖, the coefficients are in ring 𝑟, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for 𝑟). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
 
Theoremreldmpsr 14471 The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Rel dom mPwSer
 
Theorempsrval 14472* Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &   𝑂 = (TopOpen‘𝑅)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   (𝜑𝐵 = (𝐾𝑚 𝐷))    &    = ( ∘𝑓 + ↾ (𝐵 × 𝐵))    &    × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))    &    = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))    &   (𝜑𝐽 = (∏t‘(𝐷 × {𝑂})))    &   (𝜑𝐼𝑊)    &   (𝜑𝑅𝑋)       (𝜑𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
 
Theoremfnpsr 14473 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
mPwSer Fn (V × V)
 
Theorempsrvalstrd 14474 The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵𝑋)    &   (𝜑+𝑌)    &   (𝜑×𝑍)    &   (𝜑𝑅𝑊)    &   (𝜑·𝑃)    &   (𝜑𝐽𝑄)       (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) Struct ⟨1, 9⟩)
 
Theorempsrbag 14475* Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
 
Theorempsrbagf 14476* A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐹𝐷𝐹:𝐼⟶ℕ0)
 
Theoremfczpsrbag 14477* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
 
Theorempsrbaglesuppg 14478* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
 
Theorempsrbagfi 14479* A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼 ∈ Fin → 𝐷 = (ℕ0𝑚 𝐼))
 
Theorempsrbasg 14480* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅𝑊)       (𝜑𝐵 = (𝐾𝑚 𝐷))
 
Theorempsrelbas 14481* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑𝑋:𝐷𝐾)
 
Theorempsrelbasfi 14482 Simpler form of psrelbas 14481 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼 ∈ Fin)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑𝑋:(ℕ0𝑚 𝐼)⟶𝐾)
 
Theorempsrelbasfun 14483 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)       (𝑋𝐵 → Fun 𝑋)
 
Theorempsrplusgg 14484 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)       ((𝐼𝑉𝑅𝑊) → = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
 
Theorempsradd 14485 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))
 
Theorempsraddcl 14486 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &   (𝜑𝑅 ∈ Mgm)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 
Theorempsr0cl 14487* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑆)       (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
 
Theorempsr0lid 14488* The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
 
Theorempsrnegcl 14489* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) ∈ 𝐵)
 
Theorempsrlinv 14490* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝑋𝐵)    &    0 = (0g𝑅)    &    + = (+g𝑆)       (𝜑 → ((𝑁𝑋) + 𝑋) = (𝐷 × { 0 }))
 
Theorempsrgrp 14491 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)       (𝜑𝑆 ∈ Grp)
 
Theorempsr0 14492* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑂 = (0g𝑅)    &    0 = (0g𝑆)       (𝜑0 = (𝐷 × {𝑂}))
 
Theorempsrneg 14493* The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝑁 = (invg𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑀 = (invg𝑆)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑀𝑋) = (𝑁𝑋))
 
Theorempsr1clfi 14494* The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝑅 ∈ Ring)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))    &   𝐵 = (Base‘𝑆)       (𝜑𝑈𝐵)
 
Theoremreldmmpl 14495 The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Rel dom mPoly
 
Theoremmplvalcoe 14496* Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}       ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
 
Theoremmplbascoe 14497* Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
 
Theoremmplelbascoe 14498* Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    0 = (0g𝑅)    &   𝑈 = (Base‘𝑃)       ((𝐼𝑉𝑅𝑊) → (𝑋𝑈 ↔ (𝑋𝐵 ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑋𝑏) = 0 ))))
 
Theoremfnmpl 14499 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
mPoly Fn (V × V)
 
Theoremmplrcl 14500 Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       (𝑋𝐵𝐼 ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >