Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-logb | GIF version |
Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.) |
Ref | Expression |
---|---|
df-logb | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clogb 13655 | . 2 class logb | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 7772 | . . . 4 class ℂ | |
5 | cc0 7774 | . . . . 5 class 0 | |
6 | c1 7775 | . . . . 5 class 1 | |
7 | 5, 6 | cpr 3584 | . . . 4 class {0, 1} |
8 | 4, 7 | cdif 3118 | . . 3 class (ℂ ∖ {0, 1}) |
9 | 5 | csn 3583 | . . . 4 class {0} |
10 | 4, 9 | cdif 3118 | . . 3 class (ℂ ∖ {0}) |
11 | 3 | cv 1347 | . . . . 5 class 𝑦 |
12 | clog 13571 | . . . . 5 class log | |
13 | 11, 12 | cfv 5198 | . . . 4 class (log‘𝑦) |
14 | 2 | cv 1347 | . . . . 5 class 𝑥 |
15 | 14, 12 | cfv 5198 | . . . 4 class (log‘𝑥) |
16 | cdiv 8589 | . . . 4 class / | |
17 | 13, 15, 16 | co 5853 | . . 3 class ((log‘𝑦) / (log‘𝑥)) |
18 | 2, 3, 8, 10, 17 | cmpo 5855 | . 2 class (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
19 | 1, 18 | wceq 1348 | 1 wff logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
Colors of variables: wff set class |
This definition is referenced by: rplogbval 13657 |
Copyright terms: Public domain | W3C validator |