| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-logb | GIF version | ||
| Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-logb | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clogb 15179 | . 2 class logb | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 7877 | . . . 4 class ℂ | |
| 5 | cc0 7879 | . . . . 5 class 0 | |
| 6 | c1 7880 | . . . . 5 class 1 | |
| 7 | 5, 6 | cpr 3623 | . . . 4 class {0, 1} |
| 8 | 4, 7 | cdif 3154 | . . 3 class (ℂ ∖ {0, 1}) |
| 9 | 5 | csn 3622 | . . . 4 class {0} |
| 10 | 4, 9 | cdif 3154 | . . 3 class (ℂ ∖ {0}) |
| 11 | 3 | cv 1363 | . . . . 5 class 𝑦 |
| 12 | clog 15092 | . . . . 5 class log | |
| 13 | 11, 12 | cfv 5258 | . . . 4 class (log‘𝑦) |
| 14 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 15 | 14, 12 | cfv 5258 | . . . 4 class (log‘𝑥) |
| 16 | cdiv 8699 | . . . 4 class / | |
| 17 | 13, 15, 16 | co 5922 | . . 3 class ((log‘𝑦) / (log‘𝑥)) |
| 18 | 2, 3, 8, 10, 17 | cmpo 5924 | . 2 class (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
| 19 | 1, 18 | wceq 1364 | 1 wff logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) |
| Colors of variables: wff set class |
| This definition is referenced by: rplogbval 15181 |
| Copyright terms: Public domain | W3C validator |