Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplogbval GIF version

Theorem rplogbval 13090
 Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
Assertion
Ref Expression
rplogbval ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))

Proof of Theorem rplogbval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9499 . . . 4 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
213ad2ant1 1003 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ ℂ)
3 rpne0 9506 . . . 4 (𝐵 ∈ ℝ+𝐵 ≠ 0)
433ad2ant1 1003 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 ≠ 0)
5 simp2 983 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 # 1)
6 1cnd 7826 . . . . 5 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 1 ∈ ℂ)
7 apne 8429 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 # 1 → 𝐵 ≠ 1))
82, 6, 7syl2anc 409 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 # 1 → 𝐵 ≠ 1))
95, 8mpd 13 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 ≠ 1)
10 eldifpr 3560 . . 3 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
112, 4, 9, 10syl3anbrc 1166 . 2 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ (ℂ ∖ {0, 1}))
12 rpcn 9499 . . . 4 (𝑋 ∈ ℝ+𝑋 ∈ ℂ)
13123ad2ant3 1005 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
14 rpne0 9506 . . . 4 (𝑋 ∈ ℝ+𝑋 ≠ 0)
15143ad2ant3 1005 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝑋 ≠ 0)
16 eldifsn 3659 . . 3 (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0))
1713, 15, 16sylanbrc 414 . 2 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ (ℂ ∖ {0}))
18 simp3 984 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
1918relogcld 13031 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (log‘𝑋) ∈ ℝ)
20 simp1 982 . . . 4 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → 𝐵 ∈ ℝ+)
2120relogcld 13031 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
2220, 5logrpap0d 13027 . . 3 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (log‘𝐵) # 0)
2319, 21, 22redivclapd 8638 . 2 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → ((log‘𝑋) / (log‘𝐵)) ∈ ℝ)
24 fveq2 5430 . . . 4 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
2524oveq2d 5799 . . 3 (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
26 fveq2 5430 . . . 4 (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋))
2726oveq1d 5798 . . 3 (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵)))
28 df-logb 13089 . . 3 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
2925, 27, 28ovmpog 5914 . 2 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0}) ∧ ((log‘𝑋) / (log‘𝐵)) ∈ ℝ) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
3011, 17, 23, 29syl3anc 1217 1 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   ≠ wne 2309   ∖ cdif 3074  {csn 3533  {cpr 3534   class class class wbr 3938  ‘cfv 5132  (class class class)co 5783  ℂcc 7662  ℝcr 7663  0cc0 7664  1c1 7665   # cap 8387   / cdiv 8476  ℝ+crp 9490  logclog 13005   logb clogb 13088 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784  ax-pre-suploc 7785  ax-addf 7786  ax-mulf 7787 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-disj 3916  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-isom 5141  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-of 5991  df-1st 6047  df-2nd 6048  df-recs 6211  df-irdg 6276  df-frec 6297  df-1o 6322  df-oadd 6326  df-er 6438  df-map 6553  df-pm 6554  df-en 6644  df-dom 6645  df-fin 6646  df-sup 6881  df-inf 6882  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-n0 9022  df-z 9099  df-uz 9371  df-q 9459  df-rp 9491  df-xneg 9609  df-xadd 9610  df-ioo 9725  df-ico 9727  df-icc 9728  df-fz 9842  df-fzo 9971  df-seqfrec 10270  df-exp 10344  df-fac 10524  df-bc 10546  df-ihash 10574  df-shft 10639  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-clim 11100  df-sumdc 11175  df-ef 11411  df-e 11412  df-rest 12181  df-topgen 12200  df-psmet 12215  df-xmet 12216  df-met 12217  df-bl 12218  df-mopn 12219  df-top 12224  df-topon 12237  df-bases 12269  df-ntr 12324  df-cn 12416  df-cnp 12417  df-tx 12481  df-cncf 12786  df-limced 12853  df-dvap 12854  df-relog 13007  df-logb 13089 This theorem is referenced by:  rplogbcl  13091  rplogbid1  13092  rplogb1  13093  rpelogb  13094  rplogbchbase  13095  relogbval  13096  rplogbreexp  13098  rprelogbmul  13100  rpcxplogb  13109  logbgt0b  13111
 Copyright terms: Public domain W3C validator