ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-logb Unicode version

Definition df-logb 13656
Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as  ( B logb  X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where  x is a positive real apart from one and where 
y is a positive real, so the choice of  ( CC  \  { 0 ,  1 } ) and  ( CC 
\  { 0 } ) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.)
Assertion
Ref Expression
df-logb  |- logb  =  (
x  e.  ( CC 
\  { 0 ,  1 } ) ,  y  e.  ( CC 
\  { 0 } )  |->  ( ( log `  y )  /  ( log `  x ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-logb
StepHypRef Expression
1 clogb 13655 . 2  class logb
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cc 7772 . . . 4  class  CC
5 cc0 7774 . . . . 5  class  0
6 c1 7775 . . . . 5  class  1
75, 6cpr 3584 . . . 4  class  { 0 ,  1 }
84, 7cdif 3118 . . 3  class  ( CC 
\  { 0 ,  1 } )
95csn 3583 . . . 4  class  { 0 }
104, 9cdif 3118 . . 3  class  ( CC 
\  { 0 } )
113cv 1347 . . . . 5  class  y
12 clog 13571 . . . . 5  class  log
1311, 12cfv 5198 . . . 4  class  ( log `  y )
142cv 1347 . . . . 5  class  x
1514, 12cfv 5198 . . . 4  class  ( log `  x )
16 cdiv 8589 . . . 4  class  /
1713, 15, 16co 5853 . . 3  class  ( ( log `  y )  /  ( log `  x
) )
182, 3, 8, 10, 17cmpo 5855 . 2  class  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( ( log `  y
)  /  ( log `  x ) ) )
191, 18wceq 1348 1  wff logb  =  (
x  e.  ( CC 
\  { 0 ,  1 } ) ,  y  e.  ( CC 
\  { 0 } )  |->  ( ( log `  y )  /  ( log `  x ) ) )
Colors of variables: wff set class
This definition is referenced by:  rplogbval  13657
  Copyright terms: Public domain W3C validator