Detailed syntax breakdown of Definition df-lring
Step | Hyp | Ref
| Expression |
1 | | clring 13467 |
. 2
class
LRing |
2 | | vx |
. . . . . . . . 9
setvar 𝑥 |
3 | 2 | cv 1362 |
. . . . . . . 8
class 𝑥 |
4 | | vy |
. . . . . . . . 9
setvar 𝑦 |
5 | 4 | cv 1362 |
. . . . . . . 8
class 𝑦 |
6 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
7 | 6 | cv 1362 |
. . . . . . . . 9
class 𝑟 |
8 | | cplusg 12551 |
. . . . . . . . 9
class
+g |
9 | 7, 8 | cfv 5228 |
. . . . . . . 8
class
(+g‘𝑟) |
10 | 3, 5, 9 | co 5888 |
. . . . . . 7
class (𝑥(+g‘𝑟)𝑦) |
11 | | cur 13268 |
. . . . . . . 8
class
1r |
12 | 7, 11 | cfv 5228 |
. . . . . . 7
class
(1r‘𝑟) |
13 | 10, 12 | wceq 1363 |
. . . . . 6
wff (𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) |
14 | | cui 13392 |
. . . . . . . . 9
class
Unit |
15 | 7, 14 | cfv 5228 |
. . . . . . . 8
class
(Unit‘𝑟) |
16 | 3, 15 | wcel 2158 |
. . . . . . 7
wff 𝑥 ∈ (Unit‘𝑟) |
17 | 5, 15 | wcel 2158 |
. . . . . . 7
wff 𝑦 ∈ (Unit‘𝑟) |
18 | 16, 17 | wo 709 |
. . . . . 6
wff (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) |
19 | 13, 18 | wi 4 |
. . . . 5
wff ((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
20 | | cbs 12476 |
. . . . . 6
class
Base |
21 | 7, 20 | cfv 5228 |
. . . . 5
class
(Base‘𝑟) |
22 | 19, 4, 21 | wral 2465 |
. . . 4
wff
∀𝑦 ∈
(Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
23 | 22, 2, 21 | wral 2465 |
. . 3
wff
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
24 | | cnzr 13459 |
. . 3
class
NzRing |
25 | 23, 6, 24 | crab 2469 |
. 2
class {𝑟 ∈ NzRing ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
26 | 1, 25 | wceq 1363 |
1
wff LRing =
{𝑟 ∈ NzRing ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |