| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringnzr | GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lring 14028 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
| 2 | 1 | ssrab3 3283 | . 2 ⊢ LRing ⊆ NzRing |
| 3 | 2 | sseli 3193 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 1rcur 13796 Unitcui 13924 NzRingcnzr 14016 LRingclring 14027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3176 df-ss 3183 df-lring 14028 |
| This theorem is referenced by: lringring 14031 lringnz 14032 |
| Copyright terms: Public domain | W3C validator |