ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnzr GIF version

Theorem lringnzr 14151
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing → 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 14149 . . 3 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
21ssrab3 3310 . 2 LRing ⊆ NzRing
32sseli 3220 1 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  wral 2508  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  1rcur 13917  Unitcui 14045  NzRingcnzr 14137  LRingclring 14148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210  df-lring 14149
This theorem is referenced by:  lringring  14152  lringnz  14153
  Copyright terms: Public domain W3C validator