| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringnzr | GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lring 13871 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
| 2 | 1 | ssrab3 3278 | . 2 ⊢ LRing ⊆ NzRing |
| 3 | 2 | sseli 3188 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 1rcur 13639 Unitcui 13767 NzRingcnzr 13859 LRingclring 13870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 df-lring 13871 |
| This theorem is referenced by: lringring 13874 lringnz 13875 |
| Copyright terms: Public domain | W3C validator |