![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lringnzr | GIF version |
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lring 13468 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
2 | 1 | ssrab3 3253 | . 2 ⊢ LRing ⊆ NzRing |
3 | 2 | sseli 3163 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 1rcur 13268 Unitcui 13392 NzRingcnzr 13459 LRingclring 13467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-in 3147 df-ss 3154 df-lring 13468 |
This theorem is referenced by: lringring 13471 lringnz 13472 |
Copyright terms: Public domain | W3C validator |