| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lringnzr | GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-lring 13747 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
| 2 | 1 | ssrab3 3269 | . 2 ⊢ LRing ⊆ NzRing | 
| 3 | 2 | sseli 3179 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 1rcur 13515 Unitcui 13643 NzRingcnzr 13735 LRingclring 13746 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-lring 13747 | 
| This theorem is referenced by: lringring 13750 lringnz 13751 | 
| Copyright terms: Public domain | W3C validator |