ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnzr GIF version

Theorem lringnzr 13873
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing → 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 13871 . . 3 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
21ssrab3 3278 . 2 LRing ⊆ NzRing
32sseli 3188 1 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1372  wcel 2175  wral 2483  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  1rcur 13639  Unitcui 13767  NzRingcnzr 13859  LRingclring 13870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-in 3171  df-ss 3178  df-lring 13871
This theorem is referenced by:  lringring  13874  lringnz  13875
  Copyright terms: Public domain W3C validator