ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnzr GIF version

Theorem lringnzr 14030
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing → 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 14028 . . 3 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
21ssrab3 3283 . 2 LRing ⊆ NzRing
32sseli 3193 1 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  wral 2485  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  1rcur 13796  Unitcui 13924  NzRingcnzr 14016  LRingclring 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-in 3176  df-ss 3183  df-lring 14028
This theorem is referenced by:  lringring  14031  lringnz  14032
  Copyright terms: Public domain W3C validator