ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islring GIF version

Theorem islring 13748
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b 𝐵 = (Base‘𝑅)
islring.a + = (+g𝑅)
islring.1 1 = (1r𝑅)
islring.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
islring (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem islring
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 islring.b . . . 4 𝐵 = (Base‘𝑅)
31, 2eqtr4di 2247 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
4 fveq2 5558 . . . . . . . 8 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5 islring.a . . . . . . . 8 + = (+g𝑅)
64, 5eqtr4di 2247 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = + )
76oveqd 5939 . . . . . 6 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
8 fveq2 5558 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
9 islring.1 . . . . . . 7 1 = (1r𝑅)
108, 9eqtr4di 2247 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = 1 )
117, 10eqeq12d 2211 . . . . 5 (𝑟 = 𝑅 → ((𝑥(+g𝑟)𝑦) = (1r𝑟) ↔ (𝑥 + 𝑦) = 1 ))
12 fveq2 5558 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
13 islring.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1412, 13eqtr4di 2247 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
1514eleq2d 2266 . . . . . 6 (𝑟 = 𝑅 → (𝑥 ∈ (Unit‘𝑟) ↔ 𝑥𝑈))
1614eleq2d 2266 . . . . . 6 (𝑟 = 𝑅 → (𝑦 ∈ (Unit‘𝑟) ↔ 𝑦𝑈))
1715, 16orbi12d 794 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) ↔ (𝑥𝑈𝑦𝑈)))
1811, 17imbi12d 234 . . . 4 (𝑟 = 𝑅 → (((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
193, 18raleqbidv 2709 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
203, 19raleqbidv 2709 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
21 df-lring 13747 . 2 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
2220, 21elrab2 2923 1 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  1rcur 13515  Unitcui 13643  NzRingcnzr 13735  LRingclring 13746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-lring 13747
This theorem is referenced by:  lringuplu  13752
  Copyright terms: Public domain W3C validator