| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5558 |
. . . 4
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 2 | | islring.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 3 | 1, 2 | eqtr4di 2247 |
. . 3
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 4 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) |
| 5 | | islring.a |
. . . . . . . 8
⊢ + =
(+g‘𝑅) |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) |
| 7 | 6 | oveqd 5939 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑥(+g‘𝑟)𝑦) = (𝑥 + 𝑦)) |
| 8 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
| 9 | | islring.1 |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
| 10 | 8, 9 | eqtr4di 2247 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 11 | 7, 10 | eqeq12d 2211 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) ↔ (𝑥 + 𝑦) = 1 )) |
| 12 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) |
| 13 | | islring.u |
. . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) |
| 14 | 12, 13 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 15 | 14 | eleq2d 2266 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Unit‘𝑟) ↔ 𝑥 ∈ 𝑈)) |
| 16 | 14 | eleq2d 2266 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑦 ∈ (Unit‘𝑟) ↔ 𝑦 ∈ 𝑈)) |
| 17 | 15, 16 | orbi12d 794 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) ↔ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
| 18 | 11, 17 | imbi12d 234 |
. . . 4
⊢ (𝑟 = 𝑅 → (((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 19 | 3, 18 | raleqbidv 2709 |
. . 3
⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 20 | 3, 19 | raleqbidv 2709 |
. 2
⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 21 | | df-lring 13747 |
. 2
⊢ LRing =
{𝑟 ∈ NzRing ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
| 22 | 20, 21 | elrab2 2923 |
1
⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |