ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islring GIF version

Theorem islring 13338
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b 𝐡 = (Baseβ€˜π‘…)
islring.a + = (+gβ€˜π‘…)
islring.1 1 = (1rβ€˜π‘…)
islring.u π‘ˆ = (Unitβ€˜π‘…)
Assertion
Ref Expression
islring (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
Distinct variable groups:   π‘₯,𝑅,𝑦   π‘₯,𝐡,𝑦
Allowed substitution hints:   + (π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   1 (π‘₯,𝑦)

Proof of Theorem islring
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 5517 . . . 4 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
2 islring.b . . . 4 𝐡 = (Baseβ€˜π‘…)
31, 2eqtr4di 2228 . . 3 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
4 fveq2 5517 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (+gβ€˜π‘Ÿ) = (+gβ€˜π‘…))
5 islring.a . . . . . . . 8 + = (+gβ€˜π‘…)
64, 5eqtr4di 2228 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (+gβ€˜π‘Ÿ) = + )
76oveqd 5894 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (π‘₯(+gβ€˜π‘Ÿ)𝑦) = (π‘₯ + 𝑦))
8 fveq2 5517 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
9 islring.1 . . . . . . 7 1 = (1rβ€˜π‘…)
108, 9eqtr4di 2228 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = 1 )
117, 10eqeq12d 2192 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) ↔ (π‘₯ + 𝑦) = 1 ))
12 fveq2 5517 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
13 islring.u . . . . . . . 8 π‘ˆ = (Unitβ€˜π‘…)
1412, 13eqtr4di 2228 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = π‘ˆ)
1514eleq2d 2247 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ↔ π‘₯ ∈ π‘ˆ))
1614eleq2d 2247 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (𝑦 ∈ (Unitβ€˜π‘Ÿ) ↔ 𝑦 ∈ π‘ˆ))
1715, 16orbi12d 793 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)) ↔ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ)))
1811, 17imbi12d 234 . . . 4 (π‘Ÿ = 𝑅 β†’ (((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
193, 18raleqbidv 2685 . . 3 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
203, 19raleqbidv 2685 . 2 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
21 df-lring 13337 . 2 LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
2220, 21elrab2 2898 1 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  1rcur 13147  Unitcui 13261  NzRingcnzr 13328  LRingclring 13336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-lring 13337
This theorem is referenced by:  lringuplu  13342
  Copyright terms: Public domain W3C validator