ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islring GIF version

Theorem islring 13998
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b 𝐵 = (Base‘𝑅)
islring.a + = (+g𝑅)
islring.1 1 = (1r𝑅)
islring.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
islring (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem islring
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5583 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 islring.b . . . 4 𝐵 = (Base‘𝑅)
31, 2eqtr4di 2257 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
4 fveq2 5583 . . . . . . . 8 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5 islring.a . . . . . . . 8 + = (+g𝑅)
64, 5eqtr4di 2257 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = + )
76oveqd 5968 . . . . . 6 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
8 fveq2 5583 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
9 islring.1 . . . . . . 7 1 = (1r𝑅)
108, 9eqtr4di 2257 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = 1 )
117, 10eqeq12d 2221 . . . . 5 (𝑟 = 𝑅 → ((𝑥(+g𝑟)𝑦) = (1r𝑟) ↔ (𝑥 + 𝑦) = 1 ))
12 fveq2 5583 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
13 islring.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1412, 13eqtr4di 2257 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
1514eleq2d 2276 . . . . . 6 (𝑟 = 𝑅 → (𝑥 ∈ (Unit‘𝑟) ↔ 𝑥𝑈))
1614eleq2d 2276 . . . . . 6 (𝑟 = 𝑅 → (𝑦 ∈ (Unit‘𝑟) ↔ 𝑦𝑈))
1715, 16orbi12d 795 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) ↔ (𝑥𝑈𝑦𝑈)))
1811, 17imbi12d 234 . . . 4 (𝑟 = 𝑅 → (((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
193, 18raleqbidv 2719 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
203, 19raleqbidv 2719 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
21 df-lring 13997 . 2 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
2220, 21elrab2 2933 1 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  1rcur 13765  Unitcui 13893  NzRingcnzr 13985  LRingclring 13996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954  df-lring 13997
This theorem is referenced by:  lringuplu  14002
  Copyright terms: Public domain W3C validator