Step | Hyp | Ref
| Expression |
1 | | fveq2 5517 |
. . . 4
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
2 | | islring.b |
. . . 4
β’ π΅ = (Baseβπ
) |
3 | 1, 2 | eqtr4di 2228 |
. . 3
β’ (π = π
β (Baseβπ) = π΅) |
4 | | fveq2 5517 |
. . . . . . . 8
β’ (π = π
β (+gβπ) = (+gβπ
)) |
5 | | islring.a |
. . . . . . . 8
β’ + =
(+gβπ
) |
6 | 4, 5 | eqtr4di 2228 |
. . . . . . 7
β’ (π = π
β (+gβπ) = + ) |
7 | 6 | oveqd 5894 |
. . . . . 6
β’ (π = π
β (π₯(+gβπ)π¦) = (π₯ + π¦)) |
8 | | fveq2 5517 |
. . . . . . 7
β’ (π = π
β (1rβπ) = (1rβπ
)) |
9 | | islring.1 |
. . . . . . 7
β’ 1 =
(1rβπ
) |
10 | 8, 9 | eqtr4di 2228 |
. . . . . 6
β’ (π = π
β (1rβπ) = 1 ) |
11 | 7, 10 | eqeq12d 2192 |
. . . . 5
β’ (π = π
β ((π₯(+gβπ)π¦) = (1rβπ) β (π₯ + π¦) = 1 )) |
12 | | fveq2 5517 |
. . . . . . . 8
β’ (π = π
β (Unitβπ) = (Unitβπ
)) |
13 | | islring.u |
. . . . . . . 8
β’ π = (Unitβπ
) |
14 | 12, 13 | eqtr4di 2228 |
. . . . . . 7
β’ (π = π
β (Unitβπ) = π) |
15 | 14 | eleq2d 2247 |
. . . . . 6
β’ (π = π
β (π₯ β (Unitβπ) β π₯ β π)) |
16 | 14 | eleq2d 2247 |
. . . . . 6
β’ (π = π
β (π¦ β (Unitβπ) β π¦ β π)) |
17 | 15, 16 | orbi12d 793 |
. . . . 5
β’ (π = π
β ((π₯ β (Unitβπ) β¨ π¦ β (Unitβπ)) β (π₯ β π β¨ π¦ β π))) |
18 | 11, 17 | imbi12d 234 |
. . . 4
β’ (π = π
β (((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ))) β ((π₯ + π¦) = 1 β (π₯ β π β¨ π¦ β π)))) |
19 | 3, 18 | raleqbidv 2685 |
. . 3
β’ (π = π
β (βπ¦ β (Baseβπ)((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ))) β βπ¦ β π΅ ((π₯ + π¦) = 1 β (π₯ β π β¨ π¦ β π)))) |
20 | 3, 19 | raleqbidv 2685 |
. 2
β’ (π = π
β (βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ))) β βπ₯ β π΅ βπ¦ β π΅ ((π₯ + π¦) = 1 β (π₯ β π β¨ π¦ β π)))) |
21 | | df-lring 13337 |
. 2
β’ LRing =
{π β NzRing β£
βπ₯ β
(Baseβπ)βπ¦ β (Baseβπ)((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ)))} |
22 | 20, 21 | elrab2 2898 |
1
β’ (π
β LRing β (π
β NzRing β§
βπ₯ β π΅ βπ¦ β π΅ ((π₯ + π¦) = 1 β (π₯ β π β¨ π¦ β π)))) |