Theorem List for Intuitionistic Logic Explorer - 14101-14200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Definition | df-lmod 14101* |
Define the class of all left modules, which are generalizations of left
vector spaces. A left module over a ring is an (Abelian) group
(vectors) together with a ring (scalars) and a left scalar product
connecting them. (Contributed by NM, 4-Nov-2013.)
|
| ⊢ LMod = {𝑔 ∈ Grp ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
| |
| Definition | df-scaf 14102* |
Define the functionalization of the ·𝑠 operator. This restricts
the
value of ·𝑠 to
the stated domain, which is necessary when working
with restricted structures, whose operations may be defined on a larger
set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ ·sf =
(𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
| |
| Theorem | islmod 14103* |
The predicate "is a left module". (Contributed by NM, 4-Nov-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) |
| |
| Theorem | lmodlema 14104 |
Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) |
| |
| Theorem | islmodd 14105* |
Properties that determine a left module. See note in isgrpd2 13403
regarding the 𝜑 on hypotheses that name structure
components.
(Contributed by Mario Carneiro, 22-Jun-2014.)
|
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ =
(+g‘𝐹)) & ⊢ (𝜑 → × =
(.r‘𝐹)) & ⊢ (𝜑 → 1 =
(1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) |
| |
| Theorem | lmodgrp 14106 |
A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by
Mario Carneiro, 25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| |
| Theorem | lmodring 14107 |
The scalar component of a left module is a ring. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| |
| Theorem | lmodfgrp 14108 |
The scalar component of a left module is an additive group.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| |
| Theorem | lmodgrpd 14109 |
A left module is a group. (Contributed by SN, 16-May-2024.)
|
| ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) |
| |
| Theorem | lmodbn0 14110 |
The base set of a left module is nonempty. It is also inhabited (by
lmod0vcl 14129). (Contributed by NM, 8-Dec-2013.)
(Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodacl 14111 |
Closure of ring addition for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ + =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodmcl 14112 |
Closure of ring multiplication for a left module. (Contributed by NM,
14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) |
| |
| Theorem | lmodsn0 14113 |
The set of scalars in a left module is nonempty. It is also inhabited,
by lmod0cl 14126. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| |
| Theorem | lmodvacl 14114 |
Closure of vector addition for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodass 14115 |
Left module vector sum is associative. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| |
| Theorem | lmodlcan 14116 |
Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) |
| |
| Theorem | lmodvscl 14117 |
Closure of scalar product for a left module. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| |
| Theorem | scaffvalg 14118* |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
| |
| Theorem | scafvalg 14119 |
The scalar multiplication operation as a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
| |
| Theorem | scafeqg 14120 |
If the scalar multiplication operation is already a function, the
functionalization of it is equal to the original operation.
(Contributed by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = ·
) |
| |
| Theorem | scaffng 14121 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| |
| Theorem | lmodscaf 14122 |
The scalar multiplication operation is a function. (Contributed by
Mario Carneiro, 5-Oct-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ∙ = (
·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| |
| Theorem | lmodvsdi 14123 |
Distributive law for scalar product (left-distributivity). (Contributed
by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
| |
| Theorem | lmodvsdir 14124 |
Distributive law for scalar product (right-distributivity).
(Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro,
22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
| |
| Theorem | lmodvsass 14125 |
Associative law for scalar product. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 22-Sep-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ × =
(.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
| |
| Theorem | lmod0cl 14126 |
The ring zero in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| |
| Theorem | lmod1cl 14127 |
The ring unity in a left module belongs to the set of scalars.
(Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
| |
| Theorem | lmodvs1 14128 |
Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| |
| Theorem | lmod0vcl 14129 |
The zero vector is a vector. (Contributed by NM, 10-Jan-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
| |
| Theorem | lmod0vlid 14130 |
Left identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| |
| Theorem | lmod0vrid 14131 |
Right identity law for the zero vector. (Contributed by NM,
10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
| |
| Theorem | lmod0vid 14132 |
Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM, 9-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
| |
| Theorem | lmod0vs 14133 |
Zero times a vector is the zero vector. Equation 1a of [Kreyszig]
p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑂 = (0g‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
| |
| Theorem | lmodvs0 14134 |
Anything times the zero vector is the zero vector. Equation 1b of
[Kreyszig] p. 51. (Contributed by NM,
12-Jan-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 0 =
(0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | lmodvsmmulgdi 14135 |
Distributive law for a group multiple of a scalar multiplication.
(Contributed by AV, 2-Sep-2019.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ↑ =
(.g‘𝑊)
& ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |
| |
| Theorem | lmodfopnelem1 14136 |
Lemma 1 for lmodfopne 14138. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
| |
| Theorem | lmodfopnelem2 14137 |
Lemma 2 for lmodfopne 14138. (Contributed by AV, 2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| |
| Theorem | lmodfopne 14138 |
The (functionalized) operations of a left module (over a nonzero ring)
cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV,
2-Oct-2021.)
|
| ⊢ · = (
·sf ‘𝑊)
& ⊢ + =
(+𝑓‘𝑊)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑆)
& ⊢ 1 =
(1r‘𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ ·
) |
| |
| Theorem | lcomf 14139 |
A linear-combination sum is a function. (Contributed by Stefan O'Rear,
28-Feb-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐾)
& ⊢ (𝜑 → 𝐻:𝐼⟶𝐵)
& ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 · 𝐻):𝐼⟶𝐵) |
| |
| Theorem | lmodvnegcl 14140 |
Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
| |
| Theorem | lmodvnegid 14141 |
Addition of a vector with its negative. (Contributed by NM,
18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
| |
| Theorem | lmodvneg1 14142 |
Minus 1 times a vector is the negative of the vector. Equation 2 of
[Kreyszig] p. 51. (Contributed by NM,
18-Apr-2014.) (Revised by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| |
| Theorem | lmodvsneg 14143 |
Multiplication of a vector by a negated scalar. (Contributed by Stefan
O'Rear, 28-Feb-2015.)
|
| ⊢ 𝐵 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑀 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| |
| Theorem | lmodvsubcl 14144 |
Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| |
| Theorem | lmodcom 14145 |
Left module vector sum is commutative. (Contributed by Gérard
Lang, 25-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | lmodabl 14146 |
A left module is an abelian group (of vectors, under addition).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
25-Jun-2014.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| |
| Theorem | lmodcmn 14147 |
A left module is a commutative monoid under addition. (Contributed by
NM, 7-Jan-2015.)
|
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
| |
| Theorem | lmodnegadd 14148 |
Distribute negation through addition of scalar products. (Contributed
by NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊)
& ⊢ 𝑅 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝑅)
& ⊢ 𝐼 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
| |
| Theorem | lmod4 14149 |
Commutative/associative law for left module vector sum. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) → ((𝑋 + 𝑌) + (𝑍 + 𝑈)) = ((𝑋 + 𝑍) + (𝑌 + 𝑈))) |
| |
| Theorem | lmodvsubadd 14150 |
Relationship between vector subtraction and addition. (Contributed by
NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | lmodvaddsub4 14151 |
Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 − 𝐶) = (𝐷 − 𝐵))) |
| |
| Theorem | lmodvpncan 14152 |
Addition/subtraction cancellation law for vectors. (Contributed by NM,
16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | lmodvnpcan 14153 |
Cancellation law for vector subtraction (Contributed by NM,
19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | lmodvsubval2 14154 |
Value of vector subtraction in terms of addition. (Contributed by NM,
31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ 1 =
(1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + ((𝑁‘ 1 ) · 𝐵))) |
| |
| Theorem | lmodsubvs 14155 |
Subtraction of a scalar product in terms of addition. (Contributed by
NM, 9-Apr-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ − =
(-g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑁 = (invg‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| |
| Theorem | lmodsubdi 14156 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |
| |
| Theorem | lmodsubdir 14157 |
Scalar multiplication distributive law for subtraction. (Contributed by
NM, 2-Jul-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (-g‘𝐹)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝐾)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) |
| |
| Theorem | lmodsubeq0 14158 |
If the difference between two vectors is zero, they are equal.
(Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| |
| Theorem | lmodsubid 14159 |
Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.)
(Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 0 =
(0g‘𝑊)
& ⊢ − =
(-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉) → (𝐴 − 𝐴) = 0 ) |
| |
| Theorem | lmodprop2d 14160* |
If two structures have the same components (properties), one is a left
module iff the other one is. This version of lmodpropd 14161 also breaks up
the components of the scalar ring. (Contributed by Mario Carneiro,
27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | lmodpropd 14161* |
If two structures have the same components (properties), one is a left
module iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦))
⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| |
| Theorem | rmodislmodlem 14162* |
Lemma for rmodislmod 14163. This is the part of the proof of rmodislmod 14163
which requires the scalar ring to be commutative. (Contributed by AV,
3-Dec-2021.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) |
| |
| Theorem | rmodislmod 14163* |
The right module 𝑅 induces a left module 𝐿 by
replacing the
scalar multiplication with a reversed multiplication if the scalar ring
is commutative. The hypothesis "rmodislmod.r" is a definition
of a
right module analogous to Definition df-lmod 14101 of a left module, see
also islmod 14103. (Contributed by AV, 3-Dec-2021.) (Proof
shortened by
AV, 18-Oct-2024.)
|
| ⊢ 𝑉 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ · = (
·𝑠 ‘𝑅)
& ⊢ 𝐹 = (Scalar‘𝑅)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ ⨣ =
(+g‘𝐹)
& ⊢ × =
(.r‘𝐹)
& ⊢ 1 =
(1r‘𝐹)
& ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ =
(𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠))
& ⊢ 𝐿 = (𝑅 sSet 〈(
·𝑠 ‘ndx), ∗
〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) |
| |
| 7.5.2 Subspaces and spans in a left
module
|
| |
| Syntax | clss 14164 |
Extend class notation with linear subspaces of a left module or left
vector space.
|
| class LSubSp |
| |
| Definition | df-lssm 14165* |
A linear subspace of a left module or left vector space is an inhabited
(in contrast to non-empty for non-intuitionistic logic) subset of the
base set of the left-module/vector space with a closure condition on
vector addition and scalar multiplication. (Contributed by NM,
8-Dec-2013.)
|
| ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| |
| Theorem | lssex 14166 |
Existence of a linear subspace. (Contributed by Jim Kingdon,
27-Apr-2025.)
|
| ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘𝑊) ∈ V) |
| |
| Theorem | lssmex 14167 |
If a linear subspace is inhabited, the class it is built from is a set.
(Contributed by Jim Kingdon, 28-Apr-2025.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑊 ∈ V) |
| |
| Theorem | lsssetm 14168* |
The set of all (not necessarily closed) linear subspaces of a left
module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised
by Mario Carneiro, 15-Jul-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
| |
| Theorem | islssm 14169* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
| |
| Theorem | islssmg 14170* |
The predicate "is a subspace" (of a left module or left vector
space).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.) Use islssm 14169 instead. (New usage is discouraged.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
| |
| Theorem | islssmd 14171* |
Properties that determine a subspace of a left module or left vector
space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
8-Jan-2015.)
|
| ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + =
(+g‘𝑊)) & ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉)
& ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
& ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| |
| Theorem | lssssg 14172 |
A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ 𝑉) |
| |
| Theorem | lsselg 14173 |
A subspace member is a vector. (Contributed by NM, 11-Jan-2014.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| |
| Theorem | lss1 14174 |
The set of vectors in a left module is a subspace. (Contributed by NM,
8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| |
| Theorem | lssuni 14175 |
The union of all subspaces is the vector space. (Contributed by NM,
13-Mar-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod)
⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| |
| Theorem | lssclg 14176 |
Closure property of a subspace. (Contributed by NM, 8-Dec-2013.)
(Revised by Mario Carneiro, 8-Jan-2015.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ + =
(+g‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝐶 ∧ 𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvacl 14177 |
Closure of vector addition in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvsubcl 14178 |
Closure of vector subtraction in a subspace. (Contributed by NM,
31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ − =
(-g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl1 14179 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 14-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvancl2 14180 |
Non-closure: if one vector belongs to a subspace but another does not,
their sum does not belong. Useful for obtaining a new vector not in a
subspace. (Contributed by NM, 20-May-2015.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ + =
(+g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑈)
& ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈) |
| |
| Theorem | lss0cl 14181 |
The zero vector belongs to every subspace. (Contributed by NM,
12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) |
| |
| Theorem | lsssn0 14182 |
The singleton of the zero vector is a subspace. (Contributed by NM,
13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) |
| |
| Theorem | lss0ss 14183 |
The zero subspace is included in every subspace. (Contributed by NM,
27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → { 0 } ⊆ 𝑋) |
| |
| Theorem | lssle0 14184 |
No subspace is smaller than the zero subspace. (Contributed by NM,
20-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 })) |
| |
| Theorem | lssvneln0 14185 |
A vector 𝑋 which doesn't belong to a subspace
𝑈
is nonzero.
(Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| |
| Theorem | lssneln0 14186 |
A vector 𝑋 which doesn't belong to a subspace
𝑈
is nonzero.
(Contributed by NM, 14-May-2015.) (Revised by AV, 17-Jul-2022.) (Proof
shortened by AV, 19-Jul-2022.)
|
| ⊢ 0 =
(0g‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆)
& ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| |
| Theorem | lssvscl 14187 |
Closure of scalar product in a subspace. (Contributed by NM,
11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
| |
| Theorem | lssvnegcl 14188 |
Closure of negative vectors in a subspace. (Contributed by Stefan
O'Rear, 11-Dec-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| |
| Theorem | lsssubg 14189 |
All subspaces are subgroups. (Contributed by Stefan O'Rear,
11-Dec-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| |
| Theorem | lsssssubg 14190 |
All subspaces are subgroups. (Contributed by Mario Carneiro,
19-Apr-2016.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| |
| Theorem | islss3 14191 |
A linear subspace of a module is a subset which is a module in its own
right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod))) |
| |
| Theorem | lsslmod 14192 |
A submodule is a module. (Contributed by Stefan O'Rear,
12-Dec-2014.)
|
| ⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| |
| Theorem | lsslss 14193 |
The subspaces of a subspace are the smaller subspaces. (Contributed by
Stefan O'Rear, 12-Dec-2014.)
|
| ⊢ 𝑋 = (𝑊 ↾s 𝑈)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑇 = (LSubSp‘𝑋) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| |
| Theorem | islss4 14194* |
A linear subspace is a subgroup which respects scalar multiplication.
(Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario
Carneiro, 19-Apr-2016.)
|
| ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ 𝐵 = (Base‘𝐹)
& ⊢ 𝑉 = (Base‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
| |
| Theorem | lss1d 14195* |
One-dimensional subspace (or zero-dimensional if 𝑋 is the zero
vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario
Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝐹 = (Scalar‘𝑊)
& ⊢ · = (
·𝑠 ‘𝑊)
& ⊢ 𝐾 = (Base‘𝐹)
& ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆) |
| |
| Theorem | lssintclm 14196* |
The intersection of an inhabited set of subspaces is a subspace.
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ∈ 𝑆) |
| |
| Theorem | lssincl 14197 |
The intersection of two subspaces is a subspace. (Contributed by NM,
7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∩ 𝑈) ∈ 𝑆) |
| |
| Syntax | clspn 14198 |
Extend class notation with span of a set of vectors.
|
| class LSpan |
| |
| Definition | df-lsp 14199* |
Define span of a set of vectors of a left module or left vector space.
(Contributed by NM, 8-Dec-2013.)
|
| ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
| |
| Theorem | lspfval 14200* |
The span function for a left vector space (or a left module).
(Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ 𝑉 = (Base‘𝑊)
& ⊢ 𝑆 = (LSubSp‘𝑊)
& ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩
{𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |