HomeHome Intuitionistic Logic Explorer
Theorem List (p. 142 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14101-14200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0unit 14101 The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
 
Theoremunitnegcl 14102 The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
 
Syntaxcdvr 14103 Extend class notation with ring division.
class /r
 
Definitiondf-dvr 14104* Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
/r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
 
Theoremdvrfvald 14105* Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑/ = (/r𝑅))    &   (𝜑𝑅 ∈ SRing)       (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
 
Theoremdvrvald 14106 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑/ = (/r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝑈)       (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
 
Theoremdvrcl 14107 Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝐵)
 
Theoremunitdvcl 14108 The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 / 𝑌) ∈ 𝑈)
 
Theoremdvrid 14109 A ring element divided by itself is the ring unity. (dividap 8856 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 / 𝑋) = 1 )
 
Theoremdvr1 14110 A ring element divided by the ring unity is itself. (div1 8858 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 / 1 ) = 𝑋)
 
Theoremdvrass 14111 An associative law for division. (divassap 8845 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍)))
 
Theoremdvrcan1 14112 A cancellation law for division. (divcanap1 8836 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
 
Theoremdvrcan3 14113 A cancellation law for division. (divcanap3 8853 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)
 
Theoremdvreq1 14114 Equality in terms of ratio equal to ring unity. (diveqap1 8860 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) = 1𝑋 = 𝑌))
 
Theoremdvrdir 14115 Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    + = (+g𝑅)    &    / = (/r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
 
Theoremrdivmuldivd 14116 Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    + = (+g𝑅)    &    / = (/r𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝑈)       (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
 
Theoremringinvdv 14117 Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &   𝑈 = (Unit‘𝑅)    &    / = (/r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) = ( 1 / 𝑋))
 
Theoremrngidpropdg 14118* The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (1r𝐾) = (1r𝐿))
 
Theoremdvdsrpropdg 14119* The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ SRing)    &   (𝜑𝐿 ∈ SRing)       (𝜑 → (∥r𝐾) = (∥r𝐿))
 
Theoremunitpropdg 14120* The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ Ring)    &   (𝜑𝐿 ∈ Ring)       (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
 
Theoreminvrpropdg 14121* The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾 ∈ Ring)    &   (𝜑𝐿 ∈ Ring)       (𝜑 → (invr𝐾) = (invr𝐿))
 
7.3.8  Ring homomorphisms
 
Syntaxcrh 14122 Extend class notation with the ring homomorphisms.
class RingHom
 
Syntaxcrs 14123 Extend class notation with the ring isomorphisms.
class RingIso
 
Definitiondf-rhm 14124* Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
 
Definitiondf-rim 14125* Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
 
Theoremdfrhm2 14126* The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
 
Theoremrhmrcl1 14127 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
 
Theoremrhmrcl2 14128 Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
 
Theoremrhmex 14129 Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
 
Theoremisrhm 14130 A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
 
Theoremrhmmhm 14131 A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑁 = (mulGrp‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁))
 
Theoremrimrcl 14132 Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
 
Theoremisrim0 14133 A ring isomorphism is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
 
Theoremrhmghm 14134 A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
 
Theoremrhmf 14135 A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵𝐶)
 
Theoremrhmmul 14136 A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑋 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑆)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
 
Theoremisrhm2d 14137* Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremisrhmd 14138* Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &   𝑁 = (1r𝑆)    &    · = (.r𝑅)    &    × = (.r𝑆)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆 ∈ Ring)    &   (𝜑 → (𝐹1 ) = 𝑁)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))    &   𝐶 = (Base‘𝑆)    &    + = (+g𝑅)    &    = (+g𝑆)    &   (𝜑𝐹:𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))       (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrhm1 14139 Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.)
1 = (1r𝑅)    &   𝑁 = (1r𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)
 
Theoremrhmf1o 14140 A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RingHom 𝑅)))
 
Theoremisrim 14141 An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
 
Theoremrimf1o 14142 An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)
 
Theoremrimrhm 14143 A ring isomorphism is a homomorphism. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆))
 
Theoremrhmfn 14144 The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.)
RingHom Fn (Ring × Ring)
 
Theoremrhmval 14145 The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.)
((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
 
Theoremrhmco 14146 The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))
 
Theoremrhmdvdsr 14147 A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
𝑋 = (Base‘𝑅)    &    = (∥r𝑅)    &    / = (∥r𝑆)       (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
 
Theoremrhmopp 14148 A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
 
Theoremelrhmunit 14149 Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
 
Theoremrhmunitinv 14150 Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
 
7.3.9  Nonzero rings and zero rings
 
Syntaxcnzr 14151 The class of nonzero rings.
class NzRing
 
Definitiondf-nzr 14152 A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.)
NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
 
Theoremisnzr 14153 Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
 
Theoremnzrnz 14154 One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing → 10 )
 
Theoremnzrring 14155 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
(𝑅 ∈ NzRing → 𝑅 ∈ Ring)
 
Theoremisnzr2 14156 Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
 
Theoremopprnzrbg 14157 The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 14158. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
 
Theoremopprnzr 14158 The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅 ∈ NzRing → 𝑂 ∈ NzRing)
 
Theoremringelnzr 14159 A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing)
 
Theoremnzrunit 14160 A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴0 )
 
Theorem01eq0ring 14161 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
 
7.3.10  Local rings
 
Syntaxclring 14162 Extend class notation with class of all local rings.
class LRing
 
Definitiondf-lring 14163* A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
 
Theoremislring 14164* The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    1 = (1r𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
 
Theoremlringnzr 14165 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
(𝑅 ∈ LRing → 𝑅 ∈ NzRing)
 
Theoremlringring 14166 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(𝑅 ∈ LRing → 𝑅 ∈ Ring)
 
Theoremlringnz 14167 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ LRing → 10 )
 
Theoremlringuplu 14168 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝑅 ∈ LRing)    &   (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝑈𝑌𝑈))
 
7.3.11  Subrings
 
7.3.11.1  Subrings of non-unital rings
 
Syntaxcsubrng 14169 Extend class notation with all subrings of a non-unital ring.
class SubRng
 
Definitiondf-subrng 14170* Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.)
SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
 
Theoremissubrng 14171 The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)       (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
 
Theoremsubrngss 14172 A subring is a subset. (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)       (𝐴 ∈ (SubRng‘𝑅) → 𝐴𝐵)
 
Theoremsubrngid 14173 Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))
 
Theoremsubrngrng 14174 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
 
Theoremsubrngrcl 14175 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
 
Theoremsubrngsubg 14176 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
 
Theoremsubrngringnsg 14177 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
 
Theoremsubrngbas 14178 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆))
 
Theoremsubrng0 14179 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)       (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g𝑆))
 
Theoremsubrngacl 14180 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
+ = (+g𝑅)       ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ∈ 𝐴)
 
Theoremsubrngmcl 14181 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 14205. (Revised by AV, 14-Feb-2025.)
· = (.r𝑅)       ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)
 
Theoremissubrng2 14182* Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
 
Theoremopprsubrngg 14183 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
 
Theoremsubrngintm 14184* The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
 
Theoremsubrngin 14185 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴𝐵) ∈ (SubRng‘𝑅))
 
Theoremsubsubrng 14186 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))
 
Theoremsubsubrng2 14187 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))
 
Theoremsubrngpropd 14188* If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
 
7.3.11.2  Subrings of unital rings
 
Syntaxcsubrg 14189 Extend class notation with all subrings of a ring.
class SubRing
 
Syntaxcrgspn 14190 Extend class notation with span of a set of elements over a ring.
class RingSpan
 
Definitiondf-subrg 14191* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
 
Definitiondf-rgspn 14192* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠𝑡}))
 
Theoremissubrg 14193 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
 
Theoremsubrgss 14194 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐵 = (Base‘𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 𝐴𝐵)
 
Theoremsubrgid 14195 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
 
Theoremsubrgring 14196 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
 
Theoremsubrgcrng 14197 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑆 = (𝑅s 𝐴)       ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)
 
Theoremsubrgrcl 14198 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
 
Theoremsubrgsubg 14199 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
 
Theoremsubrg0 14200 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >