| Intuitionistic Logic Explorer Theorem List (p. 142 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rhmfn 14101 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RingHom Fn (Ring × Ring) | ||
| Theorem | rhmval 14102 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
| Theorem | rhmco 14103 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
| Theorem | rhmdvdsr 14104 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
| Theorem | rhmopp 14105 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
| Theorem | elrhmunit 14106 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
| Theorem | rhmunitinv 14107 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
| Syntax | cnzr 14108 | The class of nonzero rings. |
| class NzRing | ||
| Definition | df-nzr 14109 | A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | ||
| Theorem | isnzr 14110 | Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) | ||
| Theorem | nzrnz 14111 | One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) | ||
| Theorem | nzrring 14112 | A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | ||
| Theorem | isnzr2 14113 | Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) | ||
| Theorem | opprnzrbg 14114 | The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 14115. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) | ||
| Theorem | opprnzr 14115 | The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) | ||
| Theorem | ringelnzr 14116 | A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) | ||
| Theorem | nzrunit 14117 | A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) | ||
| Theorem | 01eq0ring 14118 | If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) | ||
| Syntax | clring 14119 | Extend class notation with class of all local rings. |
| class LRing | ||
| Definition | df-lring 14120* | A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | ||
| Theorem | islring 14121* | The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | lringnzr 14122 | A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | ||
| Theorem | lringring 14123 | A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | ||
| Theorem | lringnz 14124 | A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) | ||
| Theorem | lringuplu 14125 | If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Syntax | csubrng 14126 | Extend class notation with all subrings of a non-unital ring. |
| class SubRng | ||
| Definition | df-subrng 14127* | Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.) |
| ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) | ||
| Theorem | issubrng 14128 | The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | subrngss 14129 | A subring is a subset. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrngid 14130 | Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngrng 14131 | A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) | ||
| Theorem | subrngrcl 14132 | Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | ||
| Theorem | subrngsubg 14133 | A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrngringnsg 14134 | A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | subrngbas 14135 | Base set of a subring structure. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrng0 14136 | A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrngacl 14137 | A subring is closed under addition. (Contributed by AV, 14-Feb-2025.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrngmcl 14138 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 14162. (Revised by AV, 14-Feb-2025.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | issubrng2 14139* | Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | opprsubrngg 14140 | Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) | ||
| Theorem | subrngintm 14141* | The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngin 14142 | The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRng‘𝑅)) | ||
| Theorem | subsubrng 14143 | A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrng2 14144 | The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | subrngpropd 14145* | If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿)) | ||
| Syntax | csubrg 14146 | Extend class notation with all subrings of a ring. |
| class SubRing | ||
| Syntax | crgspn 14147 | Extend class notation with span of a set of elements over a ring. |
| class RingSpan | ||
| Definition | df-subrg 14148* |
Define a subring of a ring as a set of elements that is a ring in its
own right and contains the multiplicative identity.
The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧ (1r‘𝑤) ∈ 𝑠)}) | ||
| Definition | df-rgspn 14149* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
| Theorem | issubrg 14150 | The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) | ||
| Theorem | subrgss 14151 | A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrgid 14152 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgring 14153 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
| Theorem | subrgcrng 14154 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
| Theorem | subrgrcl 14155 | Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | ||
| Theorem | subrgsubg 14156 | A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrg0 14157 | A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrg1cl 14158 | A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | ||
| Theorem | subrgbas 14159 | Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrg1 14160 | A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) | ||
| Theorem | subrgacl 14161 | A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrgmcl 14162 | A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | subrgsubm 14163 | A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subrgdvds 14164 | If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝐸 = (∥r‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) | ||
| Theorem | subrguss 14165 | A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | ||
| Theorem | subrginv 14166 | A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐽 = (invr‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subrgdv 14167 | A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝐸 = (/r‘𝑆) ⇒ ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) | ||
| Theorem | subrgunit 14168 | An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐴))) | ||
| Theorem | subrgugrp 14169 | The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑉 = (Unit‘𝑆) & ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) | ||
| Theorem | issubrg2 14170* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | subrgnzr 14171 | A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing) | ||
| Theorem | subrgintm 14172* | The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤 ∈ 𝑆) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgin 14173 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
| Theorem | subsubrg 14174 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrg2 14175 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | issubrg3 14176 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
| Theorem | resrhm 14177 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
| Theorem | resrhm2b 14178 | Restriction of the codomain of a (ring) homomorphism. resghm2b 13765 analog. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
| Theorem | rhmeql 14179 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
| Theorem | rhmima 14180 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
| Theorem | rnrhmsubrg 14181 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
| ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
| Theorem | subrgpropd 14182* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
| Theorem | rhmpropd 14183* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
| Syntax | crlreg 14184 | Set of left-regular elements in a ring. |
| class RLReg | ||
| Syntax | cdomn 14185 | Class of (ring theoretic) domains. |
| class Domn | ||
| Syntax | cidom 14186 | Class of integral domains. |
| class IDomn | ||
| Definition | df-rlreg 14187* | Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | ||
| Definition | df-domn 14188* | A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} | ||
| Definition | df-idom 14189 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ IDomn = (CRing ∩ Domn) | ||
| Theorem | rrgmex 14190 | A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐸 → 𝑅 ∈ V) | ||
| Theorem | rrgval 14191* | Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} | ||
| Theorem | isrrg 14192* | Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) | ||
| Theorem | rrgeq0i 14193 | Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) | ||
| Theorem | rrgeq0 14194 | Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | ||
| Theorem | rrgss 14195 | Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐸 ⊆ 𝐵 | ||
| Theorem | unitrrg 14196 | Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) | ||
| Theorem | rrgnz 14197 | In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸) | ||
| Theorem | isdomn 14198* | Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) | ||
| Theorem | domnnzr 14199 | A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | ||
| Theorem | domnring 14200 | A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |