| Intuitionistic Logic Explorer Theorem List (p. 142 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | clidl 14101 | Ring left-ideal function. |
| class LIdeal | ||
| Syntax | crsp 14102 | Ring span function. |
| class RSpan | ||
| Definition | df-lidl 14103 | Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ LIdeal = (LSubSp ∘ ringLMod) | ||
| Definition | df-rsp 14104 | Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ RSpan = (LSpan ∘ ringLMod) | ||
| Theorem | lidlvalg 14105 | Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | ||
| Theorem | rspvalg 14106 | Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) | ||
| Theorem | lidlex 14107 | Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.) |
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) ∈ V) | ||
| Theorem | rspex 14108 | Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) ∈ V) | ||
| Theorem | lidlmex 14109 | Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) | ||
| Theorem | lidlss 14110 | An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐼 = (LIdeal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) | ||
| Theorem | lidlssbas 14111 | The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | ||
| Theorem | lidlbas 14112 | A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | ||
| Theorem | islidlm 14113* | Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) | ||
| Theorem | rnglidlmcl 14114 | A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) | ||
| Theorem | dflidl2rng 14115* | Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) | ||
| Theorem | isridlrng 14116* | A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | ||
| Theorem | lidl0cl 14117 | An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) | ||
| Theorem | lidlacl 14118 | An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) | ||
| Theorem | lidlnegcl 14119 | An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | ||
| Theorem | lidlsubg 14120 | An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) | ||
| Theorem | lidlsubcl 14121 | An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 − 𝑌) ∈ 𝐼) | ||
| Theorem | dflidl2 14122* | Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) | ||
| Theorem | lidl0 14123 | Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | ||
| Theorem | lidl1 14124 | Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | ||
| Theorem | rspcl 14125 | The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) | ||
| Theorem | rspssid 14126 | The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) | ||
| Theorem | rsp0 14127 | The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 }) | ||
| Theorem | rspssp 14128 | The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) | ||
| Theorem | lidlrsppropdg 14129* | The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) | ||
| Theorem | rnglidlmmgm 14130 | The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) | ||
| Theorem | rnglidlmsgrp 14131 | The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp) | ||
| Theorem | rnglidlrng 14132 | A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| ⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng) | ||
| Syntax | c2idl 14133 | Ring two-sided ideal function. |
| class 2Ideal | ||
| Definition | df-2idl 14134 | Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | ||
| Theorem | 2idlmex 14135 | Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.) |
| ⊢ 𝑇 = (2Ideal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) | ||
| Theorem | 2idlval 14136 | Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐽 = (LIdeal‘𝑂) & ⊢ 𝑇 = (2Ideal‘𝑅) ⇒ ⊢ 𝑇 = (𝐼 ∩ 𝐽) | ||
| Theorem | 2idlvalg 14137 | Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐽 = (LIdeal‘𝑂) & ⊢ 𝑇 = (2Ideal‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑇 = (𝐼 ∩ 𝐽)) | ||
| Theorem | isridl 14138* | A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) | ||
| Theorem | 2idlelb 14139 | Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐽 = (LIdeal‘𝑂) & ⊢ 𝑇 = (2Ideal‘𝑅) ⇒ ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) | ||
| Theorem | 2idllidld 14140 | A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | ||
| Theorem | 2idlridld 14141 | A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑂)) | ||
| Theorem | df2idl2rng 14142* | Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑈 = (2Ideal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))) | ||
| Theorem | df2idl2 14143* | Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.) |
| ⊢ 𝑈 = (2Ideal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))) | ||
| Theorem | ridl0 14144 | Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | ||
| Theorem | ridl1 14145 | Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | ||
| Theorem | 2idl0 14146 | Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝐼) | ||
| Theorem | 2idl1 14147 | Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.) |
| ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝐼) | ||
| Theorem | 2idlss 14148 | A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐼 = (2Ideal‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) | ||
| Theorem | 2idlbas 14149 | The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 𝐵 = (Base‘𝐽) ⇒ ⊢ (𝜑 → 𝐵 = 𝐼) | ||
| Theorem | 2idlelbas 14150 | The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 𝐵 = (Base‘𝐽) ⇒ ⊢ (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr‘𝑅)))) | ||
| Theorem | rng2idlsubrng 14151 | A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) ⇒ ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) | ||
| Theorem | rng2idlnsg 14152 | A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) ⇒ ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | rng2idl0 14153 | The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) ⇒ ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) | ||
| Theorem | rng2idlsubgsubrng 14154 | A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) ⇒ ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) | ||
| Theorem | rng2idlsubgnsg 14155 | A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) ⇒ ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | rng2idlsubg0 14156 | The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) ⇒ ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) | ||
| Theorem | 2idlcpblrng 14157 | The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝐸 = (𝑅 ~QG 𝑆) & ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) | ||
| Theorem | 2idlcpbl 14158 | The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝐸 = (𝑅 ~QG 𝑆) & ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) | ||
| Theorem | qus2idrng 14159 | The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14161 analog). (Contributed by AV, 23-Feb-2025.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (2Ideal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) | ||
| Theorem | qus1 14160 | The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) | ||
| Theorem | qusring 14161 | If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (2Ideal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) | ||
| Theorem | qusrhm 14162* | If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) | ||
| Theorem | qusmul2 14163 | Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑄) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | ||
| Theorem | crngridl 14164 | In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) | ||
| Theorem | crng2idl 14165 | In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) | ||
| Theorem | qusmulrng 14166 | Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14167. Similar to qusmul2 14163. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| ⊢ ∼ = (𝑅 ~QG 𝑆) & ⊢ 𝐻 = (𝑅 /s ∼ ) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝐻) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | quscrng 14167 | The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) | ||
| Theorem | rspsn 14168* | Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) | ||
| Syntax | cpsmet 14169 | Extend class notation with the class of all pseudometric spaces. |
| class PsMet | ||
| Syntax | cxmet 14170 | Extend class notation with the class of all extended metric spaces. |
| class ∞Met | ||
| Syntax | cmet 14171 | Extend class notation with the class of all metrics. |
| class Met | ||
| Syntax | cbl 14172 | Extend class notation with the metric space ball function. |
| class ball | ||
| Syntax | cfbas 14173 | Extend class definition to include the class of filter bases. |
| class fBas | ||
| Syntax | cfg 14174 | Extend class definition to include the filter generating function. |
| class filGen | ||
| Syntax | cmopn 14175 | Extend class notation with a function mapping each metric space to the family of its open sets. |
| class MetOpen | ||
| Syntax | cmetu 14176 | Extend class notation with the function mapping metrics to the uniform structure generated by that metric. |
| class metUnif | ||
| Definition | df-psmet 14177* | Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-xmet 14178* | Define the set of all extended metrics on a given base set. The definition is similar to df-met 14179, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-met 14179* | Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.) |
| ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) | ||
| Definition | df-bl 14180* | Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) | ||
| Definition | df-mopn 14181 | Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.) |
| ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | ||
| Definition | df-fbas 14182* | Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) | ||
| Definition | df-fg 14183* | Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | ||
| Definition | df-metu 14184* | Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | ||
| Theorem | blfn 14185 | The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.) |
| ⊢ ball Fn V | ||
| Theorem | mopnset 14186 | Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.) |
| ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) | ||
| Theorem | cndsex 14187 | The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| ⊢ (abs ∘ − ) ∈ V | ||
| Theorem | cntopex 14188 | The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) ∈ V | ||
| Theorem | metuex 14189 | Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (metUnif‘𝐴) ∈ V) | ||
| Syntax | ccnfld 14190 | Extend class notation with the field of complex numbers. |
| class ℂfld | ||
| Definition | df-cnfld 14191* |
The field of complex numbers. Other number fields and rings can be
constructed by applying the ↾s
restriction operator.
The contract of this set is defined entirely by cnfldex 14193, cnfldadd 14196, cnfldmul 14198, cnfldcj 14199, cnfldtset 14200, cnfldle 14201, cnfldds 14202, and cnfldbas 14194. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstr 14192 | The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldex 14193 | The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbas 14194 | The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | mpocnfldadd 14195* | The addition operation of the field of complex numbers. Version of cnfldadd 14196 using maps-to notation, which does not require ax-addf 8020. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld) | ||
| Theorem | cnfldadd 14196 | The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | mpocnfldmul 14197* | The multiplication operation of the field of complex numbers. Version of cnfldmul 14198 using maps-to notation, which does not require ax-mulf 8021. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | ||
| Theorem | cnfldmul 14198 | The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.) |
| ⊢ · = (.r‘ℂfld) | ||
| Theorem | cnfldcj 14199 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ ∗ = (*𝑟‘ℂfld) | ||
| Theorem | cnfldtset 14200 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |