HomeHome Intuitionistic Logic Explorer
Theorem List (p. 142 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14101-14200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-lidl 14101 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
LIdeal = (LSubSp ∘ ringLMod)
 
Definitiondf-rsp 14102 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
RSpan = (LSpan ∘ ringLMod)
 
Theoremlidlvalg 14103 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑊𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)))
 
Theoremrspvalg 14104 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(𝑊𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)))
 
Theoremlidlex 14105 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
(𝑊𝑉 → (LIdeal‘𝑊) ∈ V)
 
Theoremrspex 14106 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
(𝑊𝑉 → (RSpan‘𝑊) ∈ V)
 
Theoremlidlmex 14107 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑊 ∈ V)
 
Theoremlidlss 14108 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theoremlidlssbas 14109 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
 
Theoremlidlbas 14110 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) = 𝑈)
 
Theoremislidlm 14111* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
 
Theoremrnglidlmcl 14112 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (LIdeal‘𝑅)       (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremdflidl2rng 14113* Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
 
Theoremisridlrng 14114* A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
 
Theoremlidl0cl 14115 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
 
Theoremlidlacl 14116 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    + = (+g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
 
Theoremlidlnegcl 14117 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremlidlsubg 14118 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
 
Theoremlidlsubcl 14119 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑈 = (LIdeal‘𝑅)    &    = (-g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
 
Theoremdflidl2 14120* Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)))
 
Theoremlidl0 14121 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremlidl1 14122 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theoremrspcl 14123 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾𝐺) ∈ 𝑈)
 
Theoremrspssid 14124 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
 
Theoremrsp0 14125 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
 
Theoremrspssp 14126 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼) → (𝐾𝐺) ⊆ 𝐼)
 
Theoremlidlrsppropdg 14127* The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾𝑋)    &   (𝜑𝐿𝑌)       (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
 
Theoremrnglidlmmgm 14128 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
 
Theoremrnglidlmsgrp 14129 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
 
Theoremrnglidlrng 14130 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
 
7.6.3  Two-sided ideals and quotient rings
 
Syntaxc2idl 14131 Ring two-sided ideal function.
class 2Ideal
 
Definitiondf-2idl 14132 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
 
Theorem2idlmex 14133 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
𝑇 = (2Ideal‘𝑊)       (𝑈𝑇𝑊 ∈ V)
 
Theorem2idlval 14134 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       𝑇 = (𝐼𝐽)
 
Theorem2idlvalg 14135 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑅𝑉𝑇 = (𝐼𝐽))
 
Theoremisridl 14136* A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
 
Theorem2idlelb 14137 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
 
Theorem2idllidld 14138 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))       (𝜑𝐼 ∈ (LIdeal‘𝑅))
 
Theorem2idlridld 14139 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝑂 = (oppr𝑅)       (𝜑𝐼 ∈ (LIdeal‘𝑂))
 
Theoremdf2idl2rng 14140* Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
 
Theoremdf2idl2 14141* Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))))
 
Theoremridl0 14142 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremridl1 14143 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theorem2idl0 14144 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝐼)
 
Theorem2idl1 14145 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝐼)
 
Theorem2idlss 14146 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
𝐵 = (Base‘𝑊)    &   𝐼 = (2Ideal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theorem2idlbas 14147 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑𝐵 = 𝐼)
 
Theorem2idlelbas 14148 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr𝑅))))
 
Theoremrng2idlsubrng 14149 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlnsg 14150 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idl0 14151 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theoremrng2idlsubgsubrng 14152 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlsubgnsg 14153 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idlsubg0 14154 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theorem2idlcpblrng 14155 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theorem2idlcpbl 14156 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theoremqus2idrng 14157 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14159 analog). (Contributed by AV, 23-Feb-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
 
Theoremqus1 14158 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
 
Theoremqusring 14159 If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
 
Theoremqusrhm 14160* If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &   𝑋 = (Base‘𝑅)    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
 
Theoremqusmul2 14161 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑄)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
 
Theoremcrngridl 14162 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)       (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
 
Theoremcrng2idl 14163 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)       (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
 
Theoremqusmulrng 14164 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14165. Similar to qusmul2 14161. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
= (𝑅 ~QG 𝑆)    &   𝐻 = (𝑅 /s )    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (.r𝐻)       (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremquscrng 14165 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (LIdeal‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 
7.6.4  Principal ideal rings. Divisibility in the integers
 
Theoremrspsn 14166* Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
𝐵 = (Base‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 14167 Extend class notation with the class of all pseudometric spaces.
class PsMet
 
Syntaxcxmet 14168 Extend class notation with the class of all extended metric spaces.
class ∞Met
 
Syntaxcmet 14169 Extend class notation with the class of all metrics.
class Met
 
Syntaxcbl 14170 Extend class notation with the metric space ball function.
class ball
 
Syntaxcfbas 14171 Extend class definition to include the class of filter bases.
class fBas
 
Syntaxcfg 14172 Extend class definition to include the filter generating function.
class filGen
 
Syntaxcmopn 14173 Extend class notation with a function mapping each metric space to the family of its open sets.
class MetOpen
 
Syntaxcmetu 14174 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
class metUnif
 
Definitiondf-psmet 14175* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-xmet 14176* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14177, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.)
∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-met 14177* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
 
Definitiondf-bl 14178* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
 
Definitiondf-mopn 14179 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
 
Definitiondf-fbas 14180* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
 
Definitiondf-fg 14181* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
 
Definitiondf-metu 14182* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
 
Theoremblfn 14183 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
ball Fn V
 
Theoremmopnset 14184 Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
(𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
 
Theoremcndsex 14185 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(abs ∘ − ) ∈ V
 
Theoremcntopex 14186 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
(MetOpen‘(abs ∘ − )) ∈ V
 
Theoremmetuex 14187 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
(𝐴𝑉 → (metUnif‘𝐴) ∈ V)
 
Syntaxccnfld 14188 Extend class notation with the field of complex numbers.
class fld
 
Definitiondf-cnfld 14189* The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14191, cnfldadd 14194, cnfldmul 14196, cnfldcj 14197, cnfldtset 14198, cnfldle 14199, cnfldds 14200, and cnfldbas 14192. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
 
Theoremcnfldstr 14190 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld Struct ⟨1, 13⟩
 
Theoremcnfldex 14191 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld ∈ V
 
Theoremcnfldbas 14192 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
ℂ = (Base‘ℂfld)
 
Theoremmpocnfldadd 14193* The addition operation of the field of complex numbers. Version of cnfldadd 14194 using maps-to notation, which does not require ax-addf 8018. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
 
Theoremcnfldadd 14194 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
+ = (+g‘ℂfld)
 
Theoremmpocnfldmul 14195* The multiplication operation of the field of complex numbers. Version of cnfldmul 14196 using maps-to notation, which does not require ax-mulf 8019. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld)
 
Theoremcnfldmul 14196 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
· = (.r‘ℂfld)
 
Theoremcnfldcj 14197 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
∗ = (*𝑟‘ℂfld)
 
Theoremcnfldtset 14198 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.)
(MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld)
 
Theoremcnfldle 14199 The ordering of the field of complex numbers. Note that this is not actually an ordering on , but we put it in the structure anyway because restricting to does not affect this component, so that (ℂflds ℝ) is an ordered field even though fld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14189. (Revised by GG, 31-Mar-2025.)
≤ = (le‘ℂfld)
 
Theoremcnfldds 14200 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14189. (Revised by GG, 31-Mar-2025.)
(abs ∘ − ) = (dist‘ℂfld)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >