Step | Hyp | Ref
| Expression |
1 | | clss 13447 |
. 2
class
LSubSp |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 2739 |
. . 3
class
V |
4 | | vj |
. . . . . . 7
setvar π |
5 | | vs |
. . . . . . 7
setvar π |
6 | 4, 5 | wel 2149 |
. . . . . 6
wff π β π |
7 | 6, 4 | wex 1492 |
. . . . 5
wff
βπ π β π |
8 | | vx |
. . . . . . . . . . . 12
setvar π₯ |
9 | 8 | cv 1352 |
. . . . . . . . . . 11
class π₯ |
10 | | va |
. . . . . . . . . . . 12
setvar π |
11 | 10 | cv 1352 |
. . . . . . . . . . 11
class π |
12 | 2 | cv 1352 |
. . . . . . . . . . . 12
class π€ |
13 | | cvsca 12542 |
. . . . . . . . . . . 12
class
Β·π |
14 | 12, 13 | cfv 5218 |
. . . . . . . . . . 11
class (
Β·π βπ€) |
15 | 9, 11, 14 | co 5877 |
. . . . . . . . . 10
class (π₯(
Β·π βπ€)π) |
16 | | vb |
. . . . . . . . . . 11
setvar π |
17 | 16 | cv 1352 |
. . . . . . . . . 10
class π |
18 | | cplusg 12538 |
. . . . . . . . . . 11
class
+g |
19 | 12, 18 | cfv 5218 |
. . . . . . . . . 10
class
(+gβπ€) |
20 | 15, 17, 19 | co 5877 |
. . . . . . . . 9
class ((π₯(
Β·π βπ€)π)(+gβπ€)π) |
21 | 5 | cv 1352 |
. . . . . . . . 9
class π |
22 | 20, 21 | wcel 2148 |
. . . . . . . 8
wff ((π₯(
Β·π βπ€)π)(+gβπ€)π) β π |
23 | 22, 16, 21 | wral 2455 |
. . . . . . 7
wff
βπ β
π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π |
24 | 23, 10, 21 | wral 2455 |
. . . . . 6
wff
βπ β
π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π |
25 | | csca 12541 |
. . . . . . . 8
class
Scalar |
26 | 12, 25 | cfv 5218 |
. . . . . . 7
class
(Scalarβπ€) |
27 | | cbs 12464 |
. . . . . . 7
class
Base |
28 | 26, 27 | cfv 5218 |
. . . . . 6
class
(Baseβ(Scalarβπ€)) |
29 | 24, 8, 28 | wral 2455 |
. . . . 5
wff
βπ₯ β
(Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π |
30 | 7, 29 | wa 104 |
. . . 4
wff
(βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π ) |
31 | 12, 27 | cfv 5218 |
. . . . 5
class
(Baseβπ€) |
32 | 31 | cpw 3577 |
. . . 4
class π«
(Baseβπ€) |
33 | 30, 5, 32 | crab 2459 |
. . 3
class {π β π«
(Baseβπ€) β£
(βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π )} |
34 | 2, 3, 33 | cmpt 4066 |
. 2
class (π€ β V β¦ {π β π«
(Baseβπ€) β£
(βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π )}) |
35 | 1, 34 | wceq 1353 |
1
wff LSubSp =
(π€ β V β¦ {π β π«
(Baseβπ€) β£
(βπ π β π β§ βπ₯ β (Baseβ(Scalarβπ€))βπ β π βπ β π ((π₯( Β·π
βπ€)π)(+gβπ€)π) β π )}) |