Detailed syntax breakdown of Definition df-lssm
| Step | Hyp | Ref
| Expression |
| 1 | | clss 13908 |
. 2
class
LSubSp |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 2763 |
. . 3
class
V |
| 4 | | vj |
. . . . . . 7
setvar 𝑗 |
| 5 | | vs |
. . . . . . 7
setvar 𝑠 |
| 6 | 4, 5 | wel 2168 |
. . . . . 6
wff 𝑗 ∈ 𝑠 |
| 7 | 6, 4 | wex 1506 |
. . . . 5
wff
∃𝑗 𝑗 ∈ 𝑠 |
| 8 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 9 | 8 | cv 1363 |
. . . . . . . . . . 11
class 𝑥 |
| 10 | | va |
. . . . . . . . . . . 12
setvar 𝑎 |
| 11 | 10 | cv 1363 |
. . . . . . . . . . 11
class 𝑎 |
| 12 | 2 | cv 1363 |
. . . . . . . . . . . 12
class 𝑤 |
| 13 | | cvsca 12759 |
. . . . . . . . . . . 12
class
·𝑠 |
| 14 | 12, 13 | cfv 5258 |
. . . . . . . . . . 11
class (
·𝑠 ‘𝑤) |
| 15 | 9, 11, 14 | co 5922 |
. . . . . . . . . 10
class (𝑥(
·𝑠 ‘𝑤)𝑎) |
| 16 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
| 17 | 16 | cv 1363 |
. . . . . . . . . 10
class 𝑏 |
| 18 | | cplusg 12755 |
. . . . . . . . . . 11
class
+g |
| 19 | 12, 18 | cfv 5258 |
. . . . . . . . . 10
class
(+g‘𝑤) |
| 20 | 15, 17, 19 | co 5922 |
. . . . . . . . 9
class ((𝑥(
·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) |
| 21 | 5 | cv 1363 |
. . . . . . . . 9
class 𝑠 |
| 22 | 20, 21 | wcel 2167 |
. . . . . . . 8
wff ((𝑥(
·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 23 | 22, 16, 21 | wral 2475 |
. . . . . . 7
wff
∀𝑏 ∈
𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 24 | 23, 10, 21 | wral 2475 |
. . . . . 6
wff
∀𝑎 ∈
𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 25 | | csca 12758 |
. . . . . . . 8
class
Scalar |
| 26 | 12, 25 | cfv 5258 |
. . . . . . 7
class
(Scalar‘𝑤) |
| 27 | | cbs 12678 |
. . . . . . 7
class
Base |
| 28 | 26, 27 | cfv 5258 |
. . . . . 6
class
(Base‘(Scalar‘𝑤)) |
| 29 | 24, 8, 28 | wral 2475 |
. . . . 5
wff
∀𝑥 ∈
(Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠 |
| 30 | 7, 29 | wa 104 |
. . . 4
wff
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠) |
| 31 | 12, 27 | cfv 5258 |
. . . . 5
class
(Base‘𝑤) |
| 32 | 31 | cpw 3605 |
. . . 4
class 𝒫
(Base‘𝑤) |
| 33 | 30, 5, 32 | crab 2479 |
. . 3
class {𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)} |
| 34 | 2, 3, 33 | cmpt 4094 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |
| 35 | 1, 34 | wceq 1364 |
1
wff LSubSp =
(𝑤 ∈ V ↦ {𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠)}) |