ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lssm GIF version

Definition df-lssm 13849
Description: A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
Assertion
Ref Expression
df-lssm LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
Distinct variable group:   𝑎,𝑏,𝑗,𝑠,𝑥,𝑤

Detailed syntax breakdown of Definition df-lssm
StepHypRef Expression
1 clss 13848 . 2 class LSubSp
2 vw . . 3 setvar 𝑤
3 cvv 2760 . . 3 class V
4 vj . . . . . . 7 setvar 𝑗
5 vs . . . . . . 7 setvar 𝑠
64, 5wel 2165 . . . . . 6 wff 𝑗𝑠
76, 4wex 1503 . . . . 5 wff 𝑗 𝑗𝑠
8 vx . . . . . . . . . . . 12 setvar 𝑥
98cv 1363 . . . . . . . . . . 11 class 𝑥
10 va . . . . . . . . . . . 12 setvar 𝑎
1110cv 1363 . . . . . . . . . . 11 class 𝑎
122cv 1363 . . . . . . . . . . . 12 class 𝑤
13 cvsca 12699 . . . . . . . . . . . 12 class ·𝑠
1412, 13cfv 5254 . . . . . . . . . . 11 class ( ·𝑠𝑤)
159, 11, 14co 5918 . . . . . . . . . 10 class (𝑥( ·𝑠𝑤)𝑎)
16 vb . . . . . . . . . . 11 setvar 𝑏
1716cv 1363 . . . . . . . . . 10 class 𝑏
18 cplusg 12695 . . . . . . . . . . 11 class +g
1912, 18cfv 5254 . . . . . . . . . 10 class (+g𝑤)
2015, 17, 19co 5918 . . . . . . . . 9 class ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏)
215cv 1363 . . . . . . . . 9 class 𝑠
2220, 21wcel 2164 . . . . . . . 8 wff ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠
2322, 16, 21wral 2472 . . . . . . 7 wff 𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠
2423, 10, 21wral 2472 . . . . . 6 wff 𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠
25 csca 12698 . . . . . . . 8 class Scalar
2612, 25cfv 5254 . . . . . . 7 class (Scalar‘𝑤)
27 cbs 12618 . . . . . . 7 class Base
2826, 27cfv 5254 . . . . . 6 class (Base‘(Scalar‘𝑤))
2924, 8, 28wral 2472 . . . . 5 wff 𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠
307, 29wa 104 . . . 4 wff (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)
3112, 27cfv 5254 . . . . 5 class (Base‘𝑤)
3231cpw 3601 . . . 4 class 𝒫 (Base‘𝑤)
3330, 5, 32crab 2476 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)}
342, 3, 33cmpt 4090 . 2 class (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
351, 34wceq 1364 1 wff LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠)})
Colors of variables: wff set class
This definition is referenced by:  lssex  13850  lssmex  13851  lsssetm  13852  lidlmex  13971
  Copyright terms: Public domain W3C validator