ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lssm GIF version

Definition df-lssm 13448
Description: A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
Assertion
Ref Expression
df-lssm LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)})
Distinct variable group:   π‘Ž,𝑏,𝑗,𝑠,π‘₯,𝑀

Detailed syntax breakdown of Definition df-lssm
StepHypRef Expression
1 clss 13447 . 2 class LSubSp
2 vw . . 3 setvar 𝑀
3 cvv 2739 . . 3 class V
4 vj . . . . . . 7 setvar 𝑗
5 vs . . . . . . 7 setvar 𝑠
64, 5wel 2149 . . . . . 6 wff 𝑗 ∈ 𝑠
76, 4wex 1492 . . . . 5 wff βˆƒπ‘— 𝑗 ∈ 𝑠
8 vx . . . . . . . . . . . 12 setvar π‘₯
98cv 1352 . . . . . . . . . . 11 class π‘₯
10 va . . . . . . . . . . . 12 setvar π‘Ž
1110cv 1352 . . . . . . . . . . 11 class π‘Ž
122cv 1352 . . . . . . . . . . . 12 class 𝑀
13 cvsca 12542 . . . . . . . . . . . 12 class ·𝑠
1412, 13cfv 5218 . . . . . . . . . . 11 class ( ·𝑠 β€˜π‘€)
159, 11, 14co 5877 . . . . . . . . . 10 class (π‘₯( ·𝑠 β€˜π‘€)π‘Ž)
16 vb . . . . . . . . . . 11 setvar 𝑏
1716cv 1352 . . . . . . . . . 10 class 𝑏
18 cplusg 12538 . . . . . . . . . . 11 class +g
1912, 18cfv 5218 . . . . . . . . . 10 class (+gβ€˜π‘€)
2015, 17, 19co 5877 . . . . . . . . 9 class ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏)
215cv 1352 . . . . . . . . 9 class 𝑠
2220, 21wcel 2148 . . . . . . . 8 wff ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
2322, 16, 21wral 2455 . . . . . . 7 wff βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
2423, 10, 21wral 2455 . . . . . 6 wff βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
25 csca 12541 . . . . . . . 8 class Scalar
2612, 25cfv 5218 . . . . . . 7 class (Scalarβ€˜π‘€)
27 cbs 12464 . . . . . . 7 class Base
2826, 27cfv 5218 . . . . . 6 class (Baseβ€˜(Scalarβ€˜π‘€))
2924, 8, 28wral 2455 . . . . 5 wff βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠
307, 29wa 104 . . . 4 wff (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)
3112, 27cfv 5218 . . . . 5 class (Baseβ€˜π‘€)
3231cpw 3577 . . . 4 class 𝒫 (Baseβ€˜π‘€)
3330, 5, 32crab 2459 . . 3 class {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)}
342, 3, 33cmpt 4066 . 2 class (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)})
351, 34wceq 1353 1 wff LSubSp = (𝑀 ∈ V ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (βˆƒπ‘— 𝑗 ∈ 𝑠 ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘Ž ∈ 𝑠 βˆ€π‘ ∈ 𝑠 ((π‘₯( ·𝑠 β€˜π‘€)π‘Ž)(+gβ€˜π‘€)𝑏) ∈ 𝑠)})
Colors of variables: wff set class
This definition is referenced by:  lsssetm  13449
  Copyright terms: Public domain W3C validator